Ohm's Law

It's just 9 hew eq ${ }^{\mathrm{n}}$. How hard can it be?

1st let's review some Jr.
Science (grade 9):

- Electric Current: Cras...

More review (if you need it):

- Electric Circuits: Basi...

Ohm's Law:

$$
\begin{gathered}
\mathrm{V}=\mathrm{IR} \\
\mathrm{~V}=\mathrm{Volts,I} \mathrm{I}=\text { Current, } \mathrm{R}=\text { Resistance }
\end{gathered}
$$

Current: This is the number of charged particles flowing through a circuit per second

The charge of a particle is measured in Coulombs (a single electron / proton / positron / antiproton has a charge of: $1.6 \times 10^{-19} \mathrm{C}$.

One Coulomb is extremely tiny!
$\mathrm{Q}=$ It where:

$$
Q=I t
$$

t is time (in seconds)

Eg: If 4 amps of current flows for 5 seconds, how many electrons flow?

$Q=4(5)$
$Q=20$

1.25×10^{20} electron.
Voltage: This is the change in electric potential per charge
As electrons flow through the circuit they gain potential energy as they flow through a battery and lose potential energy as they flow through devices in the circuit.

This is the driving force behind current flow.

Resistance: This is a measure of the opposition to current flow in a circuit

It is measured in the units of Ohms Ω This is the Greek letter 'Omega'.
We control the resistance of a circuit by adding / subtracting devices or pathways.

Enough definitions.
"Let's get this party started" --J. Bieber, 2009

A lightbulb has a resistance of 20Ω. If 0.6 A is flowing through it, what is the voltage drop across the light bulb?

$$
\begin{aligned}
& R=20 \Omega \\
& I=.6 \mathrm{~A} \\
& V=?
\end{aligned}
$$

3 A flows through a lightbulb with a voltage drop of 6 V , what is the resistance?

$$
\begin{array}{ll}
I=3 & V=I R \\
U=6 & 6=3 R \\
R=? & \frac{6}{3}=R
\end{array}
$$

$$
2 \Omega=R
$$

Power: In an electrical circuit this is the rate at which electrical energy is transformed in a device

$$
\mathrm{P}=\mathrm{IV}
$$

P is power, in Watts (W), I is current (A), V is voltage, (V)

This eq n can be combined with Ohm's Law to give $9 \mathrm{eq}^{\mathrm{n}}$!

$P=I$ (IR)

See top circle of eq^{n}.
$\rho=I^{2} R$

$$
V=\frac{R}{V} R
$$

SOIPUT ANEQUAIONIN YOUR EQUATION GOYOU GOULD EQUMION WHITE YOU EQUAIION.

