

Ohm's Law:

V = IR

V = Volts, I = Current, R = Resistance

Current: This is the number of charged particles flowing through a circuit per second

The charge of a particle is measured in Coulombs (a single electron / proton / positron / antiproton has a charge of: 1.6×10^{-19} C.

One Coulomb is extremely tiny!

v = I t

Q is total charge of particles I is current (in Amperes, A)

t is time (in seconds)

Eq: If 4 amps of current flows for 5 seconds, how many electrons flow?

 $Q = 4(5) \qquad 20 \qquad 1^{\pm}$ $Q = 20 \qquad 1.6 \times 10^{-19} C$ $I.25 \times 10^{20} e^{IeCFras}.$ Voltage: This is the change in electric potential per charge

As electrons flow through the circuit they gain potential energy as they flow through a battery and lose potential energy as they flow through devices in the circuit.

This is the driving force behind current flow.

Resistance: This is a measure of the opposition to current flow in a circuit

It is measured in the units of Ohms Ω This is the Greek letter 'Omega'.

We control the resistance of a circuit by adding / subtracting devices or pathways.

Enough definitions. "Let's get this party started" --J. Bieber, 2009

A lightbulb has a resistance of 20 Ω . If 0.6 A is flowing through it, what is the voltage drop across the light bulb?

3 A flows through a lightbulb with a voltage drop of 6 V, what is the resistance?

$$T = 3$$
 $V = TR$
 $V = 6$ $G = 3R$
 $R = 7$ $\frac{6}{3} = R$
 $257 = R$

Power: In an electrical circuit this is the rate at which electrical energy is transformed in a device

P = IV

P is power, in Watts (W), I is current (A), V is voltage, (V)

The current through a resistor is 4 A. If the voltage drop is 12 V, what is the power of the resistor? $\underline{T} = 4$ V = 12 P = 7 Hint: 48 W P = IV = 4(12) = 48 W	A 60 W light bulb is placed in a circuit with a voltage drop of 120 V. What is the resistance of the bulb? $P=60 V=120 R=7$ $P=1V V=IK$ $120=\frac{1}{2}R$ $120=\frac{1}{2}R$ $240 52=R$ $\frac{1}{2}=1$