A force is any push or pull. Forces are measured in units of NEWTONS. (N) Force of gravity (Fg) [near Earth' surface]

 $F_g = m g$ m is mass of object in kg, g acceleration due to gravity (9.8 m/s²)

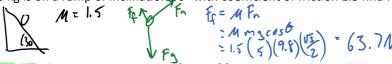
Fima

Normal Force (Fn)

Supporting force exerted by a surface AT 90° to the surface which holds a mass in place $F_n = F_g \cos \theta$ where θ is the angle of the surface

Fr= Fa

A 3.0 kg cat is placed on a stove burner which is red hot and inclined at 30°.


What normal force is exerted on the cat by the burner?

Force of Friction (F_f)

This is the force which resists motion due to the grinding together of molecules.

 μ is called the coefficient of friction <= is a value which describes how sticky 2 surfaces are A cat of mass 5.0 kg is on a ramp of inclination 30° with coefficient of friction 1.5 find Ff

Dry roads have $\mu = 0.60$, how many times more force of friction is on a dry road than a wet road, you riffraff!? :-)

~ double

Elastic Force (F_e)

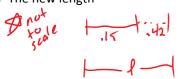
This is the force which acts to restore the shape of a deformed object

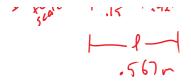
te = KBX

k spring constant (N/m) and high values (10000's) show a really stiff object low values (10's) show really stretchy objects.

X is the distance you stretch or compress the object in METERS.

Elastic limit <= the point when an object displays plastic behaviour <= stretches but doesn't bounce back


Brittle behaviour <= occurs after plastic behaviour when the object fails (breaks)


A rubber band of length 0.15 m and spring constant 12 N/m experiences a force of 5.0 N. What is

a) The amount it stretches

Fe =
$$Kx$$
 5.0 = $I2x$ $I2 = x = .42m$

b) The new length

The Force of Gravity Between ANY 2 masses:

Fg = mg <= works for finding the force of gravity between 1 mass and Earth near Earth's surface

We cannot use this if: 1) the force of gravity does not involve the Earth 2) we're not near* the Earth's surface

*near = 10 km or less

If the Fg is between 2 masses and one is NOT the Earth or you're far from Earth we use

NEWTON'S LAW OF UNIVERSAL GRAVITATION

 $Fg = Gm_1m_2$

G = universal gravitational constant = $\frac{6.67 \times 10^{11}}{11}$ m_e = mass of Earth = 5.98 x 10 ²⁴ kg

d = distance between the CENTRES of the masses (for a planet use its radius)

 r_e = radius of the Earth 6.38 x 10 6 m

Calculate the force of gravity on you (68 kg) on the moon, where $r_m = 1.74 \times 10^6$ m, and $m_m = 7.35 \times 10^{22}$ kg. $= 6.67 \times 10^{10} \times 10^{10$

Calculate the force of gravity between Mr. Connor (80 kg) and his coffee cup 1.0 kg if the centers are separated by

1.2 m