## Kinematics

This is the branch of physics that is concerned with the motion of objects on a human scale.


We're going to look at how far something will go when you throw it, launch it, drive it, drop it!

There are a few variables of interest to us in these types of problems:
 used for a general distance. $x, y$ imply a direction on a cartesian plane. SI unit is the meter ( m )
$\mathrm{t}=$ time. SI unit is the second (s)
$\mathrm{v}=$ Velocity. This is similar to speed, but it includes a direction. For example, if your direction changes -- your velocity changes. Your speed can be constant though. SI units $\frac{m}{s}$.
a = Acceleration. This is a measure of how much your velocity is changing. Think of it as increasing (decreasing) your velocity. Velocity is measured in $\frac{m}{s}$ and acceleration changes it every second. $\therefore$ the units of acceleration are $\frac{\left(\frac{m}{s}\right)}{s}=\frac{m}{s^{2}}$. It is a change in meters per second each second.

The last thing that you need to understand is subscripts. We use these a ton in physics. Get comfortable with them quick! The three most common for this section are 0 - naught. i-initial. f-final. $v_{0^{\prime}} v_{i^{\prime}} v_{f}$.

## distance vs displacement

 speed vs velocity

Kamloops is about 1 hours away when you drive an average speed of 100 $\mathrm{km} / \mathrm{hr}$. How far away is Kamloops?

$$
\begin{array}{ll}
d=v t \\
100 & =\operatorname{cov}(1)
\end{array}
$$

Vernon is 150 km away from Barriere. How long will it take to drive from Vernon to Kamloops?

$$
\begin{aligned}
& (1,0-100)=100 t \\
& \left(d_{f}-d_{i}\right)=v t \\
& \frac{50}{100}=t \quad t=\frac{1}{2} \text { hour }
\end{aligned}
$$

These questions rely on having a constant velocity. What if we are accelerating? The space shuttle has an acceleration of about $5.25 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. What is its velocity after one minute?

## Jerk



$$
\begin{aligned}
& v=a t \\
& v=5.25(60) \\
& v=315\left(\frac{1}{5}\right)
\end{aligned}
$$

How far will the shuttle have travelled after one minute? Remember: the velocity is not constant. The shuttle is clearly accelerating. IF acceleration is constant, we can use the average velocity.

$$
d=v t
$$

$$
V=a t
$$

$$
\begin{aligned}
& d=a t t \\
& d=\frac{a t^{2}}{\xi}
\end{aligned}
$$



$$
\begin{aligned}
& \left(d_{f}-d_{i}\right)=\left(\frac{v_{0}+v_{f}}{2}\right) t \\
& d_{f}-0=\left(\frac{0+315}{2}\right) 60 \\
& d f=9450_{m}
\end{aligned}
$$

Falls: $v_{0}=0, \mathrm{a}=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ [down]
Dropped: same as falls
Stops: $v_{f}=0$
Rest: one of your velocities is zero TO REST : $\mathrm{v}_{\mathrm{f}}=0$ AT REST : $\mathrm{v}_{\mathrm{o}}=0$

A brave physics student is riding his motorcycle down the street at $54 \mathrm{~km} / \mathrm{hr}$ when Gandolf steps in front and yells "You shall not pass!" The student brings his bike to a stop in 3 seconds. What is the acceleration? How far did he travel while braking?

$$
\begin{aligned}
& 54 \frac{\mathrm{~km}}{\mathrm{hr}} \cdot \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \cdot \frac{1 \mathrm{hr}}{3600 \mathrm{~s}}=15 \mathrm{~m} \\
& V=a t \\
& 15=a(3) \\
& \frac{15}{3}=a \\
& 5 \mathrm{~m} / \mathrm{s}^{2}=a \\
& d=\left(\frac{(5+0}{2}\right) 3
\end{aligned}
$$

The Incredible Hulk throws a car down 20 m cliff with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. What is the velocity of the car as it hits the ground? How long will it take? What if we changed the car to a toaster?


$$
\begin{gathered}
V_{0}=10 \mathrm{~m} / \mathrm{s} \quad t=? \quad d=20 \\
d=v_{0} t+\frac{a t^{2}}{2} \\
-20=-10 t-\frac{9.81 t^{2}}{2}
\end{gathered}
$$



There are a couple other equations for this unit that can help you.

$$
\begin{gathered}
v_{f}^{2}=v_{0}^{2}+2 a d \\
d=d_{0}+v_{0} t+\frac{a t^{2}}{2}
\end{gathered}
$$

## Homework

If a car moves with an average speed of $60.0 \mathrm{~km} / \mathrm{h}$ for an hour, it will travel a distance of 60.0 km .
A. How far would it travel if it moved at this rate for 4 hours?
B. For 10 hours?
C. Would it be possible for the car that starts from rest to attain an average speed of $60 \mathrm{~km} / \mathrm{h}$ and never exceed a reading of $60 \mathrm{~km} / \mathrm{h}$ on the speedometer?
"She moves at a constant speed in a constant direction." Say the same sentence in fewer words.

The speedometer of a car moving to the east reads $100 \mathrm{~km} / \mathrm{h}$. It passes another car that moves to the west at $100 \mathrm{~km} / \mathrm{h}$. Do both cars have the same speed? Do they have the same velocity?

During a certain period of time, the speedometer of a car reads a constant $60 \mathrm{~km} / \mathrm{h}$. Does this indicate a constant speed? A constant velocity?

What is the velocity of an airplane that flies 602 m [East] in 2.50 s ?
A spaceship traveled at $2.1 \times 10^{6} \mathrm{~km}$ in 2.7 days. What was the velocity of the spaceship in $\mathrm{km} /$ days and $\mathrm{km} / \mathrm{h}$ ? In SI units?

A particular car can go from rest to $90.0 \mathrm{~km} / \mathrm{h}$ in 10.0 s . What is its acceleration?

A car accelerates at $-2.0 \mathrm{~m} / \mathrm{s}^{2}$. If its initial velocity is $24 \mathrm{~m} / \mathrm{s}$ [West], what will its velocity be 8.0 s later?

