Energy

Sometimes it's potential

Sometimes it's kinetic

But, it's always conserved.

In this unit we will mainly look at two types of energy -- be aware that there are many other types as well.

- Gravitational
- Electricaĺ
- Wave
- Chemical
- Nuclear
- Elastic
- Thermal

We will be using:

Potential Energy $\left(E_{p}\right)$	Kinetic Energy $\left(E_{k}\right)$
The energy stored in an object.	The energy from movement.
$\epsilon_{p}=m g \Delta h$	$v=25 \mathrm{~m} / \mathrm{s}$

Energy is defined as: The ability to do work.
The units of energy is: (Newton)(distance) $=$ Nm $=$ Joule $=\mathrm{J}$

What is the potential energy $\left(\mathrm{E}_{\mathrm{p}}\right)$ of a 70 kg zombie on top of a 50m cliff?

$$
\begin{aligned}
\epsilon_{p} & =m g h \\
& =20(9.81) 50 \\
& =34 \mathrm{~kJ} .
\end{aligned}
$$

What is the kinetic energy $\left(E_{k}\right)$ of that zombie after it falls for 10 m ?

$$
\begin{aligned}
\epsilon_{k} & =\frac{n u^{2}}{2} \quad \epsilon_{k} & =\frac{70(14)^{2}}{2} \\
& =\frac{70 \sigma^{2}}{2} & =6.9 k 3
\end{aligned}
$$

Since we have defined energy to be the ability to do work, we should also define work.

$$
w=\Delta E
$$

That energy can be any type of energy. Again, in this unit we can expect the questions to be limited to potential and kinetic.

Eg: The Macho Man Randy Savage finds an unsuspecting Arts student and lifts him over his head so that he can body slam him. If the arts student weighs 67 kg , and Randy picks him up to a height of 2.3 m . What is the work done?

$$
\begin{aligned}
W & =\Delta E \\
& =E_{f}-E_{1} \\
& =E_{p}+E_{k} \\
& =m g h \\
& =67(9.81)(2.3) \\
& =1510 \mathrm{~J}
\end{aligned}
$$

The Tesla model X weighs $2,100 \mathrm{~kg}$. It can go from $0 \rightarrow 60 \mathrm{mi} / \mathrm{hr}$ in 2.8s. What is the work done?

$$
\begin{aligned}
w & =\Delta E \\
& =E_{k}=\frac{m v^{2}}{2} \\
& =\frac{2100(26.8)^{2}}{2} \\
& =754 \mathrm{~kJ}
\end{aligned}
$$

This is the SR-71 Blackbird. Made in 1966. Still the fastest plane. Ever.

It can reach Mach 3^{+}.
It takes off to a height of 500 m . It attains a velocity of $50 \mathrm{~m} / \mathrm{s}$ and has a mass of $77,000 \mathrm{~kg}$.

How much work was done?

$$
\begin{aligned}
w & =\Delta \epsilon \\
& =m g h+\frac{m v^{2}}{2} \\
& =(7700)(9.81)(500)+\frac{77000(50)^{2}}{2} \\
& =47417 \mathrm{~J} .
\end{aligned}
$$

The area under a $F_{\text {net }}$ vs distance graph will give you the work done.
Willow

The graph at right shows how much work Galeb has done. If he started from rest, what is his final velocity.

$$
\begin{aligned}
& \omega=\Delta+\square \\
& =\frac{b h}{2}+b h \\
& \begin{array}{l}
=\frac{15(20)}{2}+15(20) / 450=\frac{72 v^{2}}{2} \\
=4505
\end{array} \sqrt{\frac{2(450)}{72}}=v \\
& 3.54 \text { rms }=0
\end{aligned}
$$

For simple questions, work can be calculated as the force exerted times the distance travelled. By simple I mean that all of the force is perpendicular. The force is constant throughout the problem. Careful!!! This is a shortcut. Should you use shortcuts?

$$
\mathrm{w}=\mathrm{Fd}
$$

If the work is on an angle:

$$
\mathrm{w}=\mathrm{Fd} \cos (\theta)
$$

Alex pushes the lawnmower every weekend. He uses a force of 50 N at an angle of 40°. One strip of his lawn is 7.5 m . How much work is done?

$$
\theta=40
$$

$$
\begin{aligned}
W & =\mathrm{Fd} \cos \theta \\
& =50(7.5)(\cos 40) \\
& =2873
\end{aligned}
$$

$$
W=F d \cos \theta=\text { Area Under Graph }=\Delta E
$$

