$$
y=(x+1)^{2}-4
$$

Solving Quadratics via Graph

When we say "solving" we are trying to find the places that the parabola crosses the x -axis. This is also called the "zeroes" or the "roots".

A quadratic equate
In standard form, $a x^{2}+b x+c=0$, it is not obvious what the parabola will look like.

We complete the square so we can see it.

$$
-3 x^{2}-12 x-9=0
$$

$-3\left(x^{2}+4(x)-9=0\right.$
$-3(x+2)^{2}+12-9=0$
$-3(x+2)^{2}+3=0$

$$
x=-3+-1
$$ degree polynomial.

Will we always have 2 x -intercepts?

Lets try another:

$$
\begin{gathered}
2 x^{2}+4 x=-3 \\
2\left(x^{2}+2 x\right)+3=0 \\
2(x+1)^{2}-2+3=0 \\
2(x+1)^{2}+1=0
\end{gathered}
$$

Homework: Solve the following by graphing.

1. $x^{2}+6 x+5=0$
2. $x^{2}+4 x+4=0$
3. $0=x^{2}-2 x+2$
4. $x^{2}+4 x=5$
5. $-x^{2}+2 x-1=0$
6. $2 x^{2}=-8 x-6$

Also, Pg 215
\#1,2,17,18

