Solving Quadratics via Graph

When we say "solving" we are trying to find the places that the parabola crosses the x-axis. This is also called the "zeroes" or the "roots".

A quadratic equation is a $\frac{nc}{\sqrt{nc}}$ degree polynomial.

In standard form, $ax^2 + bx + c = 0$, it is not obvious what the parabola will look like.

We complete the square so we can see it.

$$-3x^{2} - 12x - 9 = 0$$

$$= -3(x^{2} + 4x) - 9 = 0$$

$$= -3(x^{2} + 4x + 4 - 4) - 9 = 0$$

$$= -3(x^{2} + 4x + 4 - 4) - 9 = 0$$

$$= -3(x + 2)^{2} - 4(-3) - 9 = 0$$

$$= -3(x + 2)^{2} + 3 = 0$$

Will we always have 2 x-intercepts?

Lets try another:

$$2x^{2} + 4x = -3$$

$$2(x^{2} + 2x) + 3 = 0$$

$$2(x + 1)^{2} - 1(2) + 3 = 0$$

$$2(x + 1)^{2} + 1 = 0$$

No Real Roots

DNE(XER)TR

Homework: Solve the following by graphing.

1.
$$x^2 + 6x + 5 = 0$$

2.
$$x^2 + 4x + 4 = 0$$

$$3.0 = x^2 - 2x + 2$$

$$4. x^2 + 4x = 5$$

$$5. -x^2 + 2x - 1 = 0$$
 6. $2x^2 = -8x - 6$

6.
$$2x^2 = -8x - 6$$

Also, Pg 215 #1, 2, 17, 18