Solving Quadratics via Graph

When we say "solving" we are trying to find the places that the parabola crosses the x-axis. This is also called the "zeroes" or the "roots".
A quadratic equation is a \qquad $2^{\text {nd }}$ degree polynomial.

In standard form, $a x^{2}+b x+c=0$, it is not obvious what the parabola will look like.

We complete the square so we can see it.

$$
\begin{aligned}
& =-3 x^{2}-12 x-9=0 \\
& =-3\left(x^{2}+4 x\right)-9=0 \\
& =-3\left(x^{2}+4 x+4-4\right)-9= \\
& =-3(x+2)^{2}-4(-3)-9=0 \\
& =-3(x+2)^{2}+3=0
\end{aligned}
$$

$$
-3(-1)^{2}-12(-1)-9=0
$$

Will we always have 2 x-intercepts?

$$
x^{3}=\beta
$$

Lets try another:

$$
\begin{aligned}
& 2 x^{2}+4 x=-3 \\
& 2\left(x^{2}+2 x\right)+3=0 \\
& 2(x+1)^{2}-1(2)+3=0 \\
& 2(x+1)^{2}+1=0
\end{aligned}
$$

Homework: Solve the following by graphing.

1. $x^{2}+6 x+5=0$
2. $x^{2}+4 x+4=0$
3. $0=x^{2}-2 x+2$
4. $x^{2}+4 x=5$
5. $-x^{2}+2 x-1=0$
6. $2 x^{2}=-8 x-6$

Also, Pg 215 \#1, 2, 17, 18

