
Vertex	Form	10	l

A quadratic function is a polynomial of the ______ degree. e.g.

The graph of a quadratic is called a paraboological

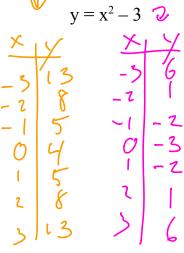
Ex. #1: Sketch the graph of the curve $y = x^2$ on the grid below.

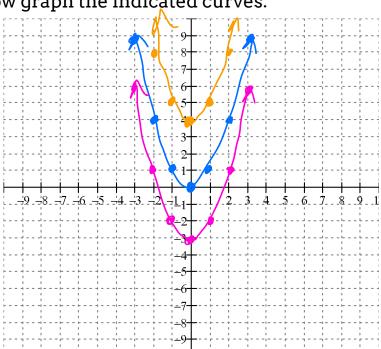
The <u>vertex</u> of the parabola is the lowest point of the graph (if the graph opens up), and the highest point of the graph (if the graph opens down).

The <u>fraction</u> of the vertex is called the <u>minimum</u> if the parabola opens upward or the <u>maximum</u> if the parabola opens downward.

The parabola is 5/metric about a line called the axis of 5/metry.

_____. This line divides the graph into two mirror images.


Investigating $y = x^2 + q$


On the grid below graph the indicated curves.

$$y = x^2 + 4$$

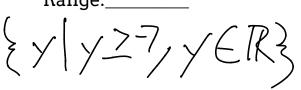
$$y = x^2 - 3$$
 2

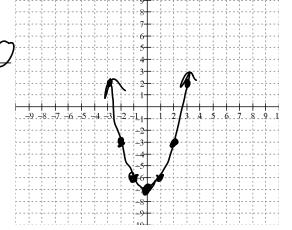
What do y	ou notice ab	out the	/ 0	el.	4	
graphs?	Shit'ts	cp/	dans	with	<u></u>	
5		' /				

In general the graph of $y = x^2 + q$ is Cagaint to the graph of $y = x^2$.

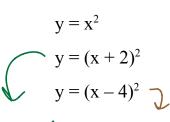
Ex. #2: Sketch the graph of $y = x^2 - 7$ on the grid below and answer the

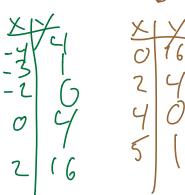
following queștions.

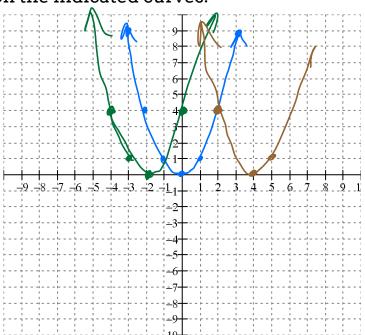

Vertex: (f)


Max or Min? Mic

Axis of Symmetry: X =


Domain:


Range:_



Investigating $y = (x - p)^2$ On the grid below graph the indicated curves.

What do you notice about the graphs? Shirted (cft/right)

In general the graph of $y = (x - p)^2$ is Congress to the graph

- If $\rho > 0$ the graph is translated p units $\rho < 0$ the graph is translated p units $\rho < 0$

axis of Symmetry!

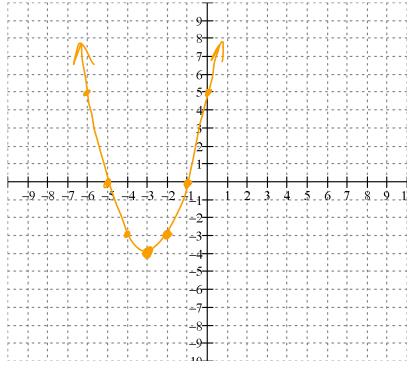
Domain: {X|XER3

Ranse:
{Y|Y70/YER3

Ex. #3: Sketch the graph of the equation $y = (x + 3)^2 - 4$ by translating

the graph of $y = x^2$.

Vertex: (-3 ~4)


Max or Min:

Axis of Symmetry:

<u>x = -3</u>

Domain: $X \times X \in \mathbb{R}^3$

Range: $\sqrt{2}$

