Vertex Form
 degree. egg.
The graph of a quadratic is called a par ab. ola
Ex. \#1: Sketch the graph of the curve $y=x^{2}$ on the grid below.

x	y
-3	9
-2	4
-1	1
0	0
1	1
2	4
3	9

The vertex of the parabola is the lowest point of the graph (if the graph opens up), and the highest point of the graph (if the graph opens down).

The y-coordinate of the vertex is called the minimum the parabola opens upward or the maximum if the parabola opens downward.

The parabola is symmetric about a line called the axis of Symmetry.
_. This line divides the graph into two mirror images.

Investigating $y=x^{2}+q$
On the grid below graph the indicated curves.
$y=x^{2}$
$y=x^{2}+4$
$y=x^{2}-32$

What do you notice about the graphs? \qquad In general the graph of $\mathrm{y}=\mathrm{x}^{2}+\mathrm{q}$ is Con gruent to the graph of $y=x^{2}$.

- If $q>0$ the graph is translated q units \qquad
- If $\frac{q}{}(0$ the graph is translated q units \qquad

Ex. \#2: Sketch the graph of $y=x^{2}-7$ on the grid below and answer the following questions.

Vertex: $(0,-7)$
Max or Min) Min
Axis of Symmetry: $x=0$
Domain:
Range:
$\{y \mid y \geq-7, y \in \mathbb{R}\}$

Investigating $\mathrm{y}=(\mathrm{x}-\mathrm{p})^{2}$
On the grid below graph the indicated curves.

$$
\left\{\begin{aligned}
y & =x^{2} \\
y & =(x+2)^{2} \\
y & =(x-4)^{2}
\end{aligned}\right.
$$

What do you notice about the graphs? \qquad
In general the graph of $y=(x-p)^{2}$ is congruent to the graph

- If $\quad \rho>0$ the graph is translated p units \qquad left
- If $p<Q$ the graph is translated p units

$$
\text { vertex: }(4,0)
$$

$17 a x$ of $\frac{1}{n} x$
axis of
Symmetry: Domain: $\left\{x \left\lvert\, \begin{array}{l}x=\mathbb{R} \\ \text { Range: } \\ \text { Ra x }\end{array}\right.\right.$ $\{y \mid y \geq 0, y \in \mathbb{R}\}$

Ex.\#3: Sketch the graph of the equation $y=(x+3)^{2}-4$ by translating the graph of $y=x^{2}$.
Vertex: $-3,-4$)
Max or Min: : \int

Axis of Symmetry:

Domain: $\{x \mid x \in \mathbb{R}\}$
Range: $\{y \mid y \geq-4, y \in \mathbb{R}\}$

