Working with Radicals

When I was a kid 'radical' meant something different:

In the news I often hear radical used differently:

And Math has yet another definition:

Any function with a root in it. The root is a radical. That's pretty radical, right?

These are radicals:

$$
\sqrt[2]{4}, \sqrt{2 x}, \sqrt{4 x-7}, \sqrt[3]{7}
$$

Let's define the parts of a radical:

$$
\underline{a} \sqrt[n]{\underline{x}}
$$

a=coefficient

n=index or root

$\mathrm{x}=\mathrm{radicand}$

We group like terms with radicals the same way we do with x, x^{2}. Ie:

$$
x+2 x+3 x^{2}+4 x^{2}
$$

Radicals work the same way:

Simplifying Radicals:
In order to simplify a radical, you want to break down the radicand to its prime factors. Look for pieces that can come out. First let's look at how we can put a number into a radical:

Convert the following to an entire radical:

$$
\begin{array}{l|l|}
\substack{\rightarrow \frac{4 \sqrt{3}}{}} & \\
\rightarrow \sqrt{3 \cdot 16} & \\
\rightarrow \sqrt{48} & \\
& =\sqrt{10 \cdot 5^{2}} \\
& =\sqrt{250 \cdot 25}
\end{array}
$$

Now let's take a radical expression and simplify it. You will be expected to do this for every radical question you come across for the rest of your life. You cannot leave a fraction as $\frac{2}{4}$. Same thing here!

List the following from least to greatest. Hint: put everything under the radical so that you can easily compare numbers.

Adding and subtracting:
We can do it, if the things are the same. Ie: $\sqrt{x}+2 \sqrt{x}=3 \sqrt{x}$

$$
\begin{gathered}
\begin{array}{c}
5 \sqrt{3}-2 \sqrt{3}= \\
3 \sqrt{3}
\end{array} \\
7 \sqrt{2}+4 \sqrt{3}-5 \sqrt{2}+6 \sqrt{3} \Rightarrow \\
2 \sqrt{2}+10 \sqrt{3} \\
=\sqrt{2^{3}-3}+\sqrt{3^{3} \cdot 2} \\
=2 \sqrt{6}+3 \sqrt{6} \\
= \\
5 \sqrt{6}
\end{gathered}
$$

$$
2 \sqrt[3]{3}-\sqrt[3]{81}=
$$

A skateboard ramp is shown. What is the total length? $X_{1}+x_{2}$? Hint: special triangles.

$$
\begin{gathered}
d=x_{1}+x_{2} \\
=40 \sqrt{3}+30 \sqrt{3} \\
=70 \sqrt{3}
\end{gathered}
$$

HW: 278 \#1,2,3ab, 6,8,9,10ab, 11,12,25

