More speed, distance and velocity.

I drove 2.5 hours before stopping for gas. In that time I drove 190km out of my 480 km trip. I want my average speed to be $80 \mathrm{~km} / \mathrm{hr}$ for the course of the trip. How fast must I drive for the second part of my journey?

	distance (km)	time (hr)	velocity (km/hr)
First Leg	190	2.5	76
Second Leg	290	3.5	83
Total	480	6.0	80

We have three variables in our equation. If we know two of them we can get the other. We know two of three in row one and three.

What is my velocity in the first leg?

$$
\begin{aligned}
& \begin{array}{l}
\text { ny velocity in the first leg? } \\
d=v t \\
190=v(2.5)
\end{array} \rightarrow v=\frac{190}{2.5}=76 \frac{\mathrm{~km}}{\mathrm{hr}}
\end{aligned}
$$

What is my total time taken?

$$
\begin{aligned}
& \text { hat is my total time taken? } \\
& d=v t \quad 480=80 t
\end{aligned} \quad t=\frac{480}{80}=6.0 \mathrm{hr} .
$$

Now that I know two of three values in the first two columns, I can use addition / subtraction to fill in the missing values.

Finally, I can find my velocity for the second leg of my journey.

$$
\begin{aligned}
& 290=v(3.5) \\
& v=\frac{240}{3.5}=82.9
\end{aligned}
$$

Position vs Time Graphs:

We can see that the steepness of this line determines the velocity at which you travel.

$$
\begin{gathered}
d_{f}-d_{i}=v\left(t_{f}-t_{i}\right) \\
v=\frac{d_{f}-d_{i}}{t_{f}-t_{i}} \| m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{gathered}
$$

What is the velocity at 20s? 60s? 120s?

$$
V_{20}=\frac{30-0}{40-0}=\frac{3}{4} \frac{\pi}{3 v} V_{60}=\frac{30-30}{80-40}=0 \frac{m}{s} V_{120}=\frac{20-30}{120-80}=-\frac{1}{4} \frac{r}{5}
$$

What does the slope of a velocity vs time graph represent?
tcceleration

Graphically Solving a Problem:

Jesse is standing 40 m away from an angry Godzilla. Clearly Jesse knows that he needs to run away. He does. Jesse runs away at $10 \frac{\mathrm{~m}}{\mathrm{~s}}$. Godzilla is faster. He (she?) chases him at $20 \frac{\mathrm{~m}}{\mathrm{~s}}$. How long will it take Godzilla to catch up to Jesse?

Jesse Godzilla

When Godzilla catches Jesse they will both be at the same position. ie: Their final distances are the same. $d_{\text {Devon }}=d_{\text {Godzilla }}$.

$$
d_{f}=d_{0-\text { Devon }}+v_{\text {Devon }} t=v_{\text {Godzilla }} t
$$

Homework

A bullet travels 0.53 km in 3.0 s ．Find its speed in m／s．
An orbiting shuttle has a speed of $27 \times 10^{3} \frac{m i}{\text { hour }}$ ．How far will it travel in 10 s？
Kelowna to Princeton（ 150 km ）takes $1 \frac{1}{3}$ hours．Vancouver is another 275 km away，and takes a further 4 hours．What is the average velocity of the trip？

Suzy averages $90 \mathrm{~km} /$ hour during 5 hours of daytime driving and $70 \mathrm{~km} / \mathrm{hour}$ in 3 hours of night driving．What is her average speed？

Draw a position vs time graph．Label one line＂Tom＂and another＂Richard＂． They both have constant velocity and Tom is travelling twice as fast as Richard．They start from the same position．The line labelled＂Harry＂starts 10 units away from Tom and Richard．He travels at the same velocity as Tom．

This graph is position vs time．Describe the motion
\square
plot $f(x)=-(x-3)^{\wedge} 2+9$ 犃目

圆 日田 三Examples \because Random

