Multiplying and Dividing Radicals

This is very similar to how you would treat x and $y . x^{2}$ and x^{3}. We look for things the same...

$$
\begin{aligned}
& 2 x+x=3 x \text { but } 2 x+y=2 x+y \\
& x^{2}(x)=x^{3 \text { but }} x^{2}(y)=x^{2} y
\end{aligned}
$$

Let's do this but with radicals instead of x, y.

$$
\frac{2 \sqrt{3} \cdot 4 \sqrt{6}}{\text { always want to follow: } 8(4) \sqrt{38}}
$$

Here are the steps that we always want to follow

1. Simplify
$=8 \sqrt{3^{2} \cdot 2}$
$\rightarrow 2$. Multiply

$$
>a \sqrt{b} \cdot c \sqrt{d}=a c \sqrt{b d}
$$

3. Simplify
$>$ Nothing can come out of the radical.
$>$ No radicals in the denominator.

$$
\begin{array}{ll}
& \\
& 3 \sqrt{5} \cdot 2 \sqrt{72} \\
= & 3 \sqrt{5} \cdot 2(3)(2) \sqrt{2} \\
= & 3(2)(3)(2) \sqrt{5-2}
\end{array}
$$

$$
=36 \sqrt{10}
$$

$$
\begin{array}{rl}
& 3 \sqrt[3]{2 x} \cdot 7 \sqrt[3]{5 x^{2}} \\
= & 3(7) \sqrt[3]{2 x \cdot 5 x^{2}} \\
= & 2\left(\sqrt[3]{10 x^{3}}\right. \\
= & 21 x \sqrt[3]{10} \\
x(x+1) \\
x^{2}+x & 2 \sqrt{6}(\sqrt{5}-2 \sqrt{10}) \\
= & 2 \sqrt{6} \cdot \sqrt{5}-2 \sqrt{6} \cdot 2 \sqrt{10} \\
= & 2 \sqrt{30}-4 \sqrt{60} \\
= & 2 \sqrt{30}-4(2) \sqrt{15} \\
= & 2 \sqrt{30}-8 \sqrt{15} \\
& \left.(\sqrt{3}-4 \sqrt{5}) \frac{2}{7}+\sqrt{5}\right) \\
\sqrt{3}(2)+\sqrt{3} \sqrt{5}-4 \sqrt{5}(2)-4 \sqrt{5} \sqrt{5}
\end{array}
$$

$$
\begin{aligned}
& 2 \sqrt{3}+\sqrt{15}-8 \sqrt{5}-4 \sqrt{25} \\
& 2 \sqrt{3}+\sqrt{15}-8 \sqrt{5}-4(5)
\end{aligned}
$$

Dividing radicals works the same way. We can follow the same steps as above. Just divide instead.

$$
\begin{aligned}
\frac{8 \sqrt{15}}{2 \sqrt{3}} & =\frac{8}{2} \sqrt{\frac{15}{3}} \\
& =4 \sqrt{5}
\end{aligned}
$$

$$
\begin{aligned}
\frac{2 \sqrt{20}}{8 \sqrt{5}} & =\frac{2}{8} \cdot \sqrt{\frac{20}{5}} \\
& =\frac{1}{4} \cdot \sqrt{4} \\
& =\frac{2}{4}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\sqrt{24 x^{2}}}{\sqrt{3 x}} & =\sqrt{\frac{24 x^{2}}{3 x}} \\
& =\sqrt{8 x} \\
& =2 \sqrt{2 x}
\end{aligned}
$$

If we get a radical in the denominator, we have to ditch that Rationalize the denominator:

$$
\begin{aligned}
\frac{2 \sqrt{5}}{\sqrt{10}} & =2 \sqrt{\frac{5}{10}} \\
& =2 \frac{\sqrt{1}}{\sqrt{2}}
\end{aligned}=\frac{2}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}
$$

$$
\begin{aligned}
& \frac{5}{2 \sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \\
& =\frac{5 \sqrt{3}}{2(3)}=\frac{5 \sqrt{3}}{6}
\end{aligned}
$$

If there is more than just one term in the denominator, we need to bring out the conjugate!

Example:

$$
\begin{aligned}
& =\frac{5(4) \sqrt{3}+5 \sqrt{3 \cdot 6}}{4(4)+4 \sqrt{6}-4 \sqrt{6}-\sqrt{6 \cdot 6}} \\
& =\frac{20 \sqrt{3}+5 \sqrt{18}}{16-6}=\frac{20 \sqrt{3}+5 \sqrt{18}}{10} \\
& =\frac{4 \sqrt{3}+3 \sqrt{2}}{2}
\end{aligned}
$$

$$
\frac{6}{\sqrt{5}+2 \sqrt{2}}
$$

HW: pg 289
\#1abcd,2,3,4,5ab,6,8ab,9ab,10

