Multiplying and Dividing Radicals

This is very similar to how you would treat x and $y . x^{2}$ and x^{3}. We look for things the same...

$$
\begin{aligned}
& 2 x+x=3 x \text { but } 2 x+y=2 x+y \\
& x^{2}(x)=\text { but } x^{2}(y)=x^{2} y \\
& x^{3}
\end{aligned}
$$

Let's do this but with radicals instead of x, y.

$$
2 \sqrt{3} \cdot 4 \sqrt{6}=2(4) \sqrt{3 \cdot 6}=8 \sqrt{3 \cdot 3 \cdot 2}
$$

Here are the steps that we always want to follow:

1. Simplify
2. Multiply

$$
\begin{aligned}
& =8(3) \sqrt{2} \\
& =24 \sqrt{2}
\end{aligned}
$$

$$
>a \sqrt{b} \cdot c \sqrt{d}=a c \sqrt{b d}
$$

3. Simplify
$>$ Nothing can come out of the radical.
$>$ No radicals in the denominator.

$$
\begin{aligned}
& 3 \sqrt{5} \cdot 2 \sqrt{72} \\
= & 3 \sqrt{5} \cdot 2 \sqrt{8 \cdot 3^{2}} \\
= & 3 \sqrt{5} \cdot 6 \sqrt{8} \\
= & 3 \sqrt{5} \cdot 12 \sqrt{2} \\
= & 36 \sqrt{10}
\end{aligned}
$$

$$
\begin{aligned}
& 3 \sqrt[3]{2 x} \cdot 7 \sqrt[3]{5 x^{2}} \\
= & 21 \sqrt[3]{10 x^{3}} \\
= & 21 x \sqrt[3]{10}
\end{aligned}
$$

$$
\begin{aligned}
& \\
&=2 \sqrt{6}(\sqrt{5}-2 \sqrt{10}) \\
&= 2 \sqrt{30}-4(2) \sqrt{6 \cdot 10} \\
&= 2 \sqrt{30}-8 \sqrt{15}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{60} \\
& \sqrt{15 \cdot 4} \\
& 2 \sqrt{15}
\end{aligned}
$$

$$
\begin{aligned}
& =2 \sqrt{3}+\sqrt{15}-8 \sqrt{5}-4 \sqrt{25} \\
& =2 \sqrt{3}+\sqrt{15}-8 \sqrt{5}-20
\end{aligned}
$$

Dividing radicals works the same way. We can follow the same steps as above. Just divide instead.

$$
\begin{aligned}
\left(\frac{8 \cdot 1 / 15}{2 \sqrt[1]{3}}\right) & =4 \sqrt{\frac{15}{3}} \\
& =4 \sqrt{5}
\end{aligned}
$$

$$
\begin{aligned}
\frac{2 \sqrt{20}}{8 \sqrt{5}} & =\frac{1 \sqrt{4}}{4} \\
& =\frac{2}{4}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\sqrt{24 x^{2}}}{\sqrt{3 x}} & =\sqrt{8 x} \\
& =2 \sqrt{2 x}
\end{aligned}
$$

If we get a radical in the denominator, we have to ditch that Rationalize the denominator:

$$
\begin{aligned}
\frac{2 \sqrt{5}}{\sqrt{10}} \cdot \frac{\sqrt{10}}{\sqrt{10}} & =\frac{2 \sqrt{5.10}}{10} \\
& =\frac{2 \sqrt{5.5 .2}}{10} \\
& =\frac{2 \cdot 5 \sqrt{2}}{10} \\
& =\sqrt{2}
\end{aligned}
$$

$$
\frac{5}{2 \sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{5 \sqrt{3}}{2(3)}
$$

If there is more than just one term in the denominator, we need to bring out the conjugate!

Example:

$$
=\frac{4 \sqrt{3}+3 \sqrt{2}}{2}
$$

$$
\begin{aligned}
& =\frac{6 \sqrt{5}-12 \sqrt{2}}{5-2 \sqrt{20}+2 \sqrt{10}-4(2)} \\
& =\frac{6 \sqrt{5}-12 \sqrt{2}}{5-8}=\frac{6 \sqrt{5}-12 \sqrt{2}}{-3} \\
& = \\
& =\frac{-4 \sqrt{2}(-2 \sqrt{5}+4 \sqrt{2})}{5 \sqrt{5}}
\end{aligned}
$$

HW: pg 289
\#1abcd,2,3,4,5ab,6,8ab,9ab,10

