Multiplying and Dividing Rationals

1. We always have to state the restrictions.
$>$ Dividing by zero is never allowed.
$>$ Sometimes this can be hard to see. For example, $y=x^{2}+x-6$ does not immediately look like it has zeroes of -3 and 2 .
2. Factor all numerators and denominators.
$>$ This is so you can cancel terms. This will often be the case.
3. State the answer as one rational.

Let's start with multiplication:

$$
\begin{aligned}
& \underset{a \rightarrow-6}{\operatorname{mon}_{\rightarrow}(+3,-2)} \frac{x^{2}+x-6}{x^{2}+2 x-15} \cdot \frac{x-3}{x-2} \\
& \frac{x^{2}+x-6}{\sqrt{2}} \frac{x^{2}+2 x}{\frac{1}{2}} \frac{15}{2 y} \\
& \begin{array}{ll}
a \rightarrow-15 \\
a \rightarrow 2
\end{array} \\
& \frac{x^{2}-2 x}{x(x-2)+3 x-6}+3(x-2) \\
& x^{2}-3 x+5 x-15 \\
& x(x-3)+5(x-3) \\
& (x-2)(x+3) \\
& (x-3 x+5) \\
& (-3,5) \\
& x=2 \pi /-3 \\
& x-2=0 \text { of } x+3=0 \\
& x=2 \quad x=-3 \\
& =\frac{x+3}{x+5}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x^{2}+7 x+12}{x^{2}+2 x-15} \cdot \frac{x^{2}-5 x+6}{x^{2}-16}
\end{aligned}
$$

$$
\begin{aligned}
& (x+4)(x+3)
\end{aligned}
$$

We love quadratics, we love factoring and we love fractions!
This should be the best chapter ever!
When we divide a couple things need to be remembered.

1. We invert and multiply when we have a fraction divided by a fraction.
$>$ This is sometimes called "multiply by the inverse".
2. You can not cancel terms until this is done.
3. We will end up with one more non permissible term.

$$
\frac{3}{2} \div \frac{1}{2} \frac{3}{2}\left(\frac{1}{1}\right)
$$

$$
\begin{aligned}
& \frac{x^{2}-x-20}{x^{2}-6 x} \div \frac{x^{2}+9 x+20}{x^{2}-12 x+36} \\
& \left.\begin{array}{c|c|c}
x^{2}-x-20 & x^{2}+9 x+20 \\
x^{2}-5 x+4-20 & x^{2}-6 x \\
x(x-5)+4(x-5 & x^{2}+5 x+4 x+20 \\
(x-5)(x+4) & \mid x(x+5)+4(x+5) & x(x-6)(x+4) \\
(x+5)
\end{array} \right\rvert\, \begin{array}{l}
x^{2}-12 x+36 \\
x^{2}-6 x-6 x+36 \\
x(x-6)-6(x-6) \\
x-6)(x-6) \\
(x-6)^{2}
\end{array} \\
& \frac{(x-5)(x+4)(x-6)^{2}}{x(x-6)(x+5)(x+4)} \\
& N_{6} \operatorname{Pr}^{S} \text { sine } \\
& =\frac{(x-5)(x-6)}{x(x+5)}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x^{2}+15 x+56}{x^{2}-3 x-54} \div \frac{x^{2}+6 x-16}{x^{2}+4 x-12}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x+7}{x-9}
\end{aligned}
$$

Homework: pg: 327
\#1,2,4,7,8abc,10,15,16

