Multiplying and Dividing Rationals

1. We always have to state the restrictions.
$>$ Dividing by zero is never allowed.
$>$ Sometimes this can be hard to see. For example, $y=x^{2}+x-6$ does not immediately look like it has zeroes of -3 and 2 .
2. Factor all numerators and denominators.
$>$ This is so you can cancel terms. This will often be the case.
3. State the answer as one rational.

Let's start with multiplication:

$$
\frac{x^{2}+x-6}{x^{2}+2 x-15} \cdot \frac{x-3}{x-2}
$$

$$
\frac{x^{2}+7 x+12}{x^{2}+2 x-15} \cdot \frac{x^{2}-5 x+6}{x^{2}-16}
$$

We love quadratics, we love factoring and we love fractions!
This should be the best chapter ever!
When we divide a couple things need to be remembered.

1. We invert and multiply when we have a fraction divided by a fraction.
$>$ This is sometimes called "multiply by the inverse".
2. You can not cancel terms until this is done.
3. We will end up with one more non permissible term.

$$
\frac{x^{2}-x-20}{x^{2}-6 x} \div \frac{x^{2}+9 x+20}{x^{2}-12 x+36}
$$

$$
\frac{x^{2}+15 x+56}{x^{2}-3 x-54} \div \frac{x^{2}+6 x-16}{x^{2}+4 x-12}
$$

Homework: pg: 327 \#1,2,4,7,8abc,10,15,16

