Newton's laws are the laws which describe acceleration of objects based on the forces acting upon the object. Dynamics is the study of accelerating objects, the accel of which is found using the forces acting on the object. Force is a vector measured in units of newtons (N) and it is a compound unit meaning the newton is composed of smaller units. Specifically $\mathrm{N}=\mathrm{kg} \mathrm{m} / \mathrm{s}^{2}$.

$$
F=m a \quad k g \frac{m}{s^{2}}
$$

The best method of proceeding in a problem involving various forces is to draw a FREE BODY DIAGRAM (FBD). This is a diagram showing all real forces acting on an object, outward from the object itself. Ex. A 10 kg cat is on a table and pulled to the left with 30 N of force. If the coefficient of friction is 0.20 draw an FBD:

$30 \mathrm{~N} \quad F_{f}=\mu F_{n}$

$$
=.2(10)(9.8)
$$

$$
=19.6 \mathrm{~N}
$$

$30-19.6=10.4 \mathrm{~N}$

$$
\begin{aligned}
& F=m a \\
& 10.4=10 a \\
& \frac{10.4}{10}=a=1.04 \\
& \mathrm{rv} / \mathrm{s}^{2}
\end{aligned}
$$

A gorilla of mass 200 kg is on a 30° slope, with coefficient of friction of 0.40 , draw an FBD.

$$
\begin{aligned}
F_{n} & =m g \cos \theta \quad F_{f}=\mu F_{n} \\
F & =m g \sin \theta \\
F=200(9.8) & \sin (30)=980 \mathrm{~N}
\end{aligned}
$$

Newton's Second Law states the acceleration of a mass is in the direction of the unbalanced force acting upon it, the magnitude of the acceleration is directly proportional to the size of the unbalanced force, and inversely proportioned to the object's mass. Unbalanced force is another name for Fret (total of all forces)

$$
W-L
$$

$$
F_{\text {net }}=m a
$$

$$
\begin{array}{rl}
980-679=F_{\text {net }} & =301 \mathrm{~N} \\
F=m a & 301=200 \mathrm{a} \\
\text { equation: net }=\mathrm{ma} & \frac{301}{2 \omega}=1.5 \mathrm{r} / \mathrm{s}
\end{array}
$$

Newton's 2nd Law may be expressed with the equation: $\underline{\text { Fret }=m a ~}$

Find the acceleration of the cat in the first example AND the gorilla in the end example:

Newton's First Law (aka the law of inertia) states that if an object experiences no unbalanced force (meaning all forces are balanced) then it will remain at a constant velocity, it has no acceleration. In reference to the 2 nd law, if Fret $=0$ then $a=0$ as well

$$
\begin{aligned}
& F=m a \\
& F=m(0) \\
& F=0
\end{aligned}
$$

Newton's Third Law states that if any object A exerts a force on another object B, then B must exert an equal but opposite force on A. This gives rise to forces between masses and later the law of conservation of momentum.

Do a pushup.

1) Rush yourself vp.
2) Push the Garth down.

The acceleration of multi - body systems:

1. Label all forces acting on every body in the system
2. Find the total force (Fret) by thinking which forces work together, or against one another

A rock of mass 2.0 kg is thrown upward with a force of 36 N , what is its initial acceleration while being thrown?

A rocket accelerates upward at $3.0 \mathrm{~m} / \mathrm{s}^{2}$ if it has mass 1000 kg what force of thrust must the Engines be applying?

