聂

THERE BArACK

We have a number of strategies to solve these
\#1- We solve graphically - just like with the linear versions
With one extra step.
Eg: $x^{2}-2 x-3 \leq 0$
$(x-1)^{2}-1-3 \leq 0$
$(x-1)^{2}-4 \leq 0$
$\{x \mid-1 \leq x \leq 3, x \in \mathbb{R}\}$

Once we have it graphed, we need to know which portion of the
parabola is a solution to our inequality
Our inequality is asking for all of the points that cause $x^{2}-2 x-3$ to
be ≤ 0.
We can use test points (3 in this case to confirm our intuition) and
we must also decide if we are to use (o, or 0 .
Answer is ${ }^{\text {s solution set: }}$
$\{x \mid-1 \leq x \leq 3, x \in \mathbb{R}\}$
Eg2: $\quad x^{2}-4 x>-3$

