$$
\begin{aligned}
& \text { Work It } \\
& \text { Work }=\Delta E_{p}
\end{aligned}
$$

We can do work on a charge by changing its Electric Potential Energy.

This is VERY similar to Gravitational Potential Energy...

$$
E_{p}=\frac{k q_{1} q_{2}}{r}
$$

Ask yourself... is the ' r ' squared?
Is it? Check again...
Just like with gravitational potential we have $\mathrm{E}_{\mathrm{p}}=0$ @ ∞.
We add the negative sign through logic. If the charges are opposite - there will be an attraction - the charges will move towards each other - add the negative.

What is the electric potential energy (E_{p}) of an electron that is $1 / 2$ an angstrom from a proton?

Determine the work done to a $2.0 \mu \mathrm{C}$ charge which is moved from 3.0 m to 5.0 m away from a $-3.0 \mu \mathrm{C}$ charge.

$$
\begin{aligned}
W=\Delta E & =E_{p f}-E_{p 0} \\
& =\frac{k q_{1} q_{2}}{r_{f}}-\frac{k q_{1} q_{2}}{r_{0}} \\
& =k q_{1} q_{2}\left(\frac{1}{r_{f}}-\frac{1}{r_{0}}\right)
\end{aligned}
$$

Hint: $7.2 \times 10^{-3} \mathrm{~J}$

Does the Law of Conservation of Energy apply to this scenario?
$E_{p 0}+E_{k 0}=E_{p f}+E_{k f}+Q$

For sub atomic particles we can assume $\mathrm{Q}=0$. Its contribution is so small that it can safely be considered negligible. Its effect is lost in Sig
 Figs.

An electron is .20 m away from a second electron. The first is fired at $3.0 \times 10^{7} \frac{\mathrm{~m}}{\mathrm{~s}}$ directly toward the second. Calculate how close it can get.

Hint1: $\mathrm{v}_{\mathrm{f}}=0$
Hint2: $5.61 \times 10^{-15} \mathrm{~m}$

A $6.0 \mu \mathrm{C}$ charge is at rest 1.2 m from a similar charge and is released. What speed will the first charge have when 2.0 m from the second charge, if the mass is $5.0 \mu \mathrm{~kg}$?

$$
\text { Hint: } \mathrm{v}_{\mathrm{f}}=208 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

