Adding and Subtracting Radicals

How hard can adding be?
You just have to remember that you can't take the square root of a negative number! Not yet...

State the restriction:

Solve:

$$
\sqrt{x+1}+3=5
$$

Here are the steps you want to follow every time you have a radical in your expression:

1. Isolate the radical
$>$ Get the root alone on one side of the equation
2. Square both sides
$>$ This gets rid of the radical. Back to easy mode after this!
3. Solve for x
4. Check for extraneous roots
$>$ Sometimes you may find answers that are not allowed. Non Permissible Values (NPV)

$$
\begin{aligned}
(\sqrt{x+1})^{2} & \left.=(5-3)^{2}\left|\begin{array}{l}
x+1 \geq 0 \\
x+1
\end{array}\right| \begin{array}{l}
x \geq-1 \\
x
\end{array}\right)=3
\end{aligned}
$$

$$
x=\sqrt{x+10}+2
$$

$$
(x-2)^{2}=(\sqrt{x+10})^{2}
$$

$$
\begin{gathered}
m--3,-2 \\
6
\end{gathered}
$$

$$
x^{2}-4 x+4=x+10
$$

$$
x^{2}-4 x-x=10-4
$$

$$
\begin{aligned}
& x^{2}-5 x=6
\end{aligned}
$$

When you square both sides of an equation, you are destroying information about the signs of the two sides. Now we have a new equation. Both answers may work in that equation, but we need to check our original equation to see that it works in there too!

$$
\begin{aligned}
& \begin{aligned}
x+2 & \geq 0 \\
x & \geq
\end{aligned} \\
& \begin{array}{c}
x-\sqrt{x+2}=0 \\
(x)^{2}=(\sqrt{x+2})^{2}
\end{array} \\
& x^{2}=x+2 \\
& x^{2}-x-2=0 \\
& (x-2)(x+1) \\
& (x-2)(x+1)=0 \\
& \text { or }
\end{aligned}
$$

HW: pg: 300
\#1,3-6,7ab,8,12

$$
\begin{aligned}
& \frac{6}{\sqrt{5}+2 \sqrt{2}} \cdot \frac{\sqrt{5}-2 \sqrt{2}}{\sqrt{5}-2 \sqrt{2}} \\
& =\frac{6 \sqrt{5}-6(2) \sqrt{2}}{\sqrt{5 \cdot 5}-2 \sqrt{5 \cdot 2}+2 \sqrt{2 \cdot 5}-2(2) \sqrt{2 \cdot 2}} \\
& \longrightarrow_{0}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{6 \sqrt{5}-12 \sqrt{2}}{5-4 \sqrt{4}} \\
& (6 \sqrt[3]{2}-4 \sqrt{13})^{2} \\
& (6 \sqrt[3]{2}-4 \sqrt{13})(6 \sqrt[3]{2}-4 \sqrt{13}) \\
& 36 \sqrt[3]{4}-24 \sqrt[3]{2} \sqrt{13}-24 \sqrt[3]{2} \sqrt{13}+(6(13) \\
& 36 \sqrt[3]{4}-48 \sqrt[3]{2} \sqrt{13}+6(13)
\end{aligned}
$$

