Adding and Subtracting Radicals

How hard can adding be?
You just have to remember that you can't take the square root of a negative number! Not yet...

State the restriction:

$\sqrt{4-x}$	$\sqrt{x-3}$
$4-x \geq 0$	
$4 \geq x$	$x-3 \geq 0$
$x \geq 3$	

A

$$
\sqrt{x+1}+3=5
$$

Here are the steps you want to follow every time you have a radical in your expression:

1. Isolate the radical
$>$ Get the root alone on one side of the equation
2. Square both sides
$>$ This gets rid of the radical. Back to easy mode after this!
3. Solve for x
4. Check for extraneous roots
$>$ Sometimes you may find answers that are not allowed. Non Permissible Values (NPV)

$$
\begin{aligned}
\sqrt{x+1} & =5-3 \\
(\sqrt{x+1})^{2} & =(2)^{2} \\
x+1 & =4 \\
x & =3
\end{aligned}
$$

$$
\begin{aligned}
& (x-2)(x-2) \\
& x^{2}-2 x-2 x+4 \\
& x^{2}-4 x+4
\end{aligned}
$$

$$
\begin{gathered}
x=\sqrt{x+10}+2 \\
(x-2)^{2}=(\sqrt{x+10})^{2} \\
x^{2}-4 x+4=x+10 \\
x^{2}-4 x-x-10=0 \\
1 x^{2}-5 x-6=0 \quad-6,1 \\
\frac{4}{2}-6 x+x-6 \\
x^{\frac{4}{2}-6 x}
\end{gathered}
$$

$$
\therefore-10
$$

$$
\begin{aligned}
& x(\underline{x-6})+(\underline{x-6)}=0 \\
& (x-6)(x+1) \\
& x / x=6)
\end{aligned}
$$

When you square both sides of an equation, you are destroying information about the signs of the two sides. Now we have a new equation. Both answers may work in that equation, but we need to check our original equation to see that it works in there too!

$$
\begin{array}{cc}
A \begin{array}{l}
x+2 \geq 0 \\
x \geq-2
\end{array} \\
x-\sqrt{x+2}=0 \\
x=\sqrt{x+2} & -2 \\
x^{2}=x+2 & -1 \\
\frac{1 x^{2}-x-2}{x>}=0 & (-2,+1) \\
\frac{x^{2}-2 x+x-2}{x(x-2)}+\underline{(x-2)}=0 \\
(x-2)(x+1) \\
x-2=0 \quad \text { or } x+1=0 \\
x=2 \quad x=-1
\end{array}
$$

HW: pg: 300
\#1,3-6,7ab,8,12

