Let's Solve This Stuff!
Last class we did a whole lot of factoring. But, we didn't actually solve any of the equations! That's what today is for.

Here's what we do:

1. Set our equation equal to zero
$>$ Sometimes you may need to rearrange the equation
2. Factor.
$>$ Completely. We must have all multiplied terms.
3. If everything is multiplied, we can make the claim that at least one of those things must be zero.
$>$ If $x y=0$ then either x or y must be zero.

Example time!

$$
\begin{aligned}
& \mid x^{2}-6 x+8=0 \\
& \begin{array}{l}
(x-4)(x-2)=0 \\
x-4=0 \text { rf } x-2=0
\end{array} \\
& x=4 \\
& x=2 \\
& x=2,4 \\
& 4 x^{2}+12 x=-9 \\
& 4 x^{2}+12 x+9=0 \\
& m \rightarrow 36 \\
& a \rightarrow 12 \\
& 66 \\
& 2 x(2 x+3)+3(2 x+3) \\
& (2 x+3)(2 x+3)=0 \\
& (2 x+3)^{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& 2 x+3=0 \\
& x=-\frac{3}{2} \\
& 6 x^{2}+2 x=0 \\
& 2 x(3 x+1)=0 \\
& 2 x=0 \text { or } 3 x+1=0 \\
& x=0 \quad x=-\frac{1}{3} \\
& x=0,-\frac{1}{3} \\
& 2(x-3)^{2}+7(x-3)+5=0 \\
& \text { Let } x-3=R \\
& 2 R^{2}+7 R+5=0 \\
& \text { L } \\
& 2 R^{2}+5 R+2 R+5=0 \\
& R(2 R+5)+(2 R+5)=0 \\
& (2 R+5)(R+1)=0 \\
& R=-1, \frac{-5}{2}
\end{aligned}
$$

$$
\begin{gathered}
x-1=\frac{2}{x} \\
x-\frac{2}{x}-1=0 \\
x^{2}-x-2=0 \\
(x-2)(x+1)=0 \\
x=-1,2 \\
\frac{x}{3}+\frac{2}{6}=5 \\
\frac{x}{3}+\frac{1}{3}-5=0 \\
\frac{x}{3}+\frac{1-15}{3}=0 \\
\frac{x}{3}-\frac{14}{3}=0
\end{gathered} \quad x=\frac{14}{3}(3)
$$

We could also ask you to find the quadratic equation that has specific roots...

Example: Write a quadratic equation with the given roots:

$$
\begin{aligned}
& x=-5 \quad \text { or } \quad x=-3 \\
& x+5=0 \\
& x+3=0 \\
& (x+5)(x+3)=0 \\
& x^{2}+8 x+15=0
\end{aligned}
$$

$$
\begin{gathered}
4,-2 \\
(x-4)(x+2)=0 \\
x^{2}-2 x-8=0
\end{gathered}
$$

$$
\begin{gathered}
\frac{-3}{2}, \frac{1}{4} \\
(2 x+3)(4 x-1)=0 \\
8 x^{2}+10 x-3=0
\end{gathered}
$$

Word Problem:
The Length of a lacrosse field is 10 m less than twice the width. The area of the field is $6,600 \mathrm{~m}^{2}$. Find the dimensions of the field.

$$
f=2 w-10
$$

$$
\begin{aligned}
& A=l w=6,600 \\
& (2 w-10) w=6600 \\
& 2 w^{2}-10 w-6600=0 \\
& 2\left(w^{2}-5 w-3700\right)=0
\end{aligned}
$$

$w=w$

$$
w=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\begin{aligned}
h & =60,-5 \text { ceal } \text { world } \\
l & =2(60)-10 \\
& =120-10 \\
& =110 \mathrm{~m}
\end{aligned}
$$

HW: pg230
\#7,9-11,12a,19,30

