Let's Solve This Stuff!
Last class we did a whole lot of factoring. But, we didn't actually solve any of the equations! That's what today is for.

Here's what we do:

1. Set our equation equal to zero
$>$ Sometimes you may need to rearrange the equation
2. Factor.
$>$ Completely. We must have all multiplied terms.
3. If everything is multiplied, we can make the claim that at least one of those things must be zero.
$>$ If $x y=0$ then either x or y must be zero.

Example time!

$$
\begin{gathered}
x^{2}-6 x+8=0 \quad-4,-2 \\
(x-4)(x-2)=0 \\
x=2 \text { or } 4 \\
4 x^{2}+12 x=-9 \\
4 x^{2}+12 x+9=0 \quad(6,6) \\
4 x^{2}+6 x+6 x+9=0 \\
2 x(2 x+3)+\frac{2 x+3)}{4 x+2 x+3)}=0 \\
(2 x+3)(2 x+3)=0 \\
x=-\frac{3}{2}
\end{gathered}
$$

$$
\begin{aligned}
& 6 x^{2}+2 x=0 \\
& 2 x(3 x+1)=0 \\
& x=0 \text { or } x=-\frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let }^{R} \mathbb{R}^{2(4}-2(x-3)^{2}+7(x-3)+5=0
\end{aligned}
$$

$$
\begin{array}{ll}
2 R^{2}+2 R+5=0 & \sim \rightarrow 10 \\
a \rightarrow 7 \\
2 R^{2}+5 R+2 R+5=0 & (5,2) \\
\overline{R(2 R+5)}+(2 R+5)=0 & \\
\left.\frac{R(2 R+5)(R+1)=0}{(2 R+3}\right)
\end{array}
$$

s.b/

$$
\begin{aligned}
& {[2(x-3)+5]((x-3)+1)=0} \\
& (2 x-1)(x-2)=0 \\
& x=\frac{1}{2} \text { or } x=2
\end{aligned}
$$

$$
\begin{aligned}
& x(x-1)=\left(\frac{2}{x}\right)^{x} \\
& x^{2}-x=2 \\
& x^{2}-x-2=0 \\
& (x-2)(x+1)=0 \\
& x=2 \text { or }-1 \\
& 6\left(\frac{x}{3}+\frac{2}{6}\right)=(5)^{6} \\
& 2 x+2=30 \\
& 2 x=28 \\
& 2 x+1=15 \\
& x=14
\end{aligned}
$$

We could also ask you to find the quadratic equation that has specific roots...

Example: Write a quadratic equation with the given roots:

$$
\begin{array}{ll}
\quad-5,-3 \\
x=-5 \text { and } & x=-3 \\
x+5=0 & x+3=0 \\
(x+5)(x+3)=0 \\
x^{2}+8 x+15=0
\end{array}
$$

$$
\begin{gathered}
4,-2 \\
x=4 \quad x=-2 \\
(x-4)(x+2)=0 \\
x^{2}-2 x-8=0 \\
\frac{-3}{2}, \frac{1}{4} \\
x=-\frac{3}{2} \quad x=\frac{1}{4} \\
\left(x+\frac{3}{2}\right)\left(x-\frac{1}{4}\right)=0 \\
x^{2}-\frac{x}{4}+\frac{6 x}{4}-\frac{3}{8} \\
8\left(x^{2}+\frac{5 x}{4}-\frac{3}{8}=0\right)^{8} \\
8 x^{2}+10 x-3=0
\end{gathered}
$$

Word Problem:
The Length of a lacrosse field is 10 m less than twice the width. The area of the field is $6,600 \mathrm{~m}^{2}$. Find the dimensions of the field.

$$
\begin{aligned}
& w \underbrace{A=6,600}_{2 w-10} \\
& A=\ln (2 w-10) \\
& 6600=w(2 w
\end{aligned}
$$

$$
\begin{aligned}
& 0=2 w^{2}-10 w-6600 \\
&=w^{2}-5 w-3300 \\
&=\left(w-\frac{5}{2}\right)^{2}-\left(\frac{5}{2}\right)^{2}-3300 \\
& \sqrt{3300}+\frac{25}{4}=\sqrt{\left(w-\frac{5}{2}\right)^{2}} \\
& \sqrt{3300+\frac{2}{4}}+\frac{5}{2}=w \\
& \begin{array}{c}
H W: p g 230 \\
\# 7,9-11,12 a, 19,30
\end{array}
\end{aligned}
$$

