Let's Solve This Stuff!

Last class we did a whole lot of factoring. But, we didn't actually solve any of the equations! That's what today is for.

Here's what we do:

1. Set our equation equal to zero

> Sometimes you may need to rearrange the equation Factor

2. Factor.

 \succ Completely. We must have all multiplied terms.

3. If everything is multiplied, we can make the claim that at least one of those things must be zero.

> If xy=0 then either x or y must be zero.

Example time!

$$x^{2} - 6x + 8 = 0 \qquad -4 - 2$$

$$(\chi - 4)(\chi - 2) = 0$$

$$\chi = 2 \text{ or } 4$$

$$4x^{2} + 12x = -9$$

$$4x^{2} + 12x + 9 = 0$$

$$4x^{2} + 12x + 9 = 0$$

$$4x^{2} + 6x + 6x + 9 = 0$$

$$4x^{2} + 6x + 6x + 9 = 0$$

$$2x(2x+3) + 3(2x+3) = 0$$

$$(2x+3)(2x+3) + 3(2x+3) = 0$$

$$x = -\frac{3}{2}$$

$$6x^{2} + 2x = 0$$

$$2x(3x+1) = 0$$

$$x = 0 \quad x = -\frac{1}{3}$$

$$2(4x - 3)^{2} + 7(x - 3) + 5 = 0$$

$$Let R = 3$$

$$2R^{2} + 7R + 5 = 0$$

$$2R^{2} + 5R + 2R + 5 = 0$$

$$(5, 2)$$

$$R(2R + 5) + (2R + 5) = 0$$

$$(2R + 5)(R + 1) = 0$$

$$(2(x - 3) + 5)((x - 3) + 1) = 0$$

$$(2x - 1)(x - 2) = 0$$

$$x = 2 \quad \text{or} \quad x = 2$$

$$X(x-1) = \left(\frac{2}{x}\right) \times$$

$$\chi^{2} - \chi = Z$$

$$\chi^{2} - \chi - 2 = 0$$

$$(x - 2)(x + 1) = 0$$

$$\chi = 2 \quad \text{or} \quad -1$$

$$6\left(\frac{x}{3} + \frac{2}{6}\right) = (5)^{6}$$

$$2x + 2 = 3^{\circ}$$

$$2x + 2 = 2^{\circ}$$

$$x = -1^{\circ}$$

$$x = -1^{\circ}$$

We could also ask you to find the quadratic equation that has specific roots...

Example: Write a quadratic equation with the given roots:

$$-5,-3$$

$$X = -5 \quad and \quad X = -3$$

$$X + 5 = 0 \quad X + 3 = 0$$

$$(x + 5)(x + 3) = 0$$

$$x^{2} + 8X + 15 = 0$$

$$\frac{-3}{2}, \frac{1}{4}$$

$$\chi = -\frac{3}{2}, \chi = \frac{1}{4}$$

$$(\chi + \frac{3}{2})(\chi - \frac{1}{4}) = 0$$

$$\chi^{2} - \frac{\chi}{4} + \frac{6\chi}{4} - \frac{3}{8}$$

$$\frac{8}{4}(\chi^{2} + \frac{5\chi}{4} - \frac{3}{8}) = 0$$

$$\frac{8}{4}\chi^{2} + \frac{10\chi}{4} - \frac{3}{8} = 0$$

Word Problem:

The Length of a lacrosse field is 10m less than twice the width. The area of the field is $6,600m^2$. Find the dimensions of the field.

2~2-10~-6600 6 5 5--- 3300 C.2 = ~2 2 - (~ 3300 5, 25/4 5 3300 7 3300+25 + 5/2

HW: pg230 #7,9-11,12a,19,30