Work and Power

Definition of Work:

$$
\begin{aligned}
W & =\Delta E \\
& =F d \cos \theta \\
& =m a d \cos \theta
\end{aligned}
$$

= Ares under
yrapt

Definition of Power:

The average speed of a MLB fastball is $42 \mathrm{~m} / \mathrm{s}$. To get a home run (clear the park) you need to hit the ball with at least a velocity of $30.6 \mathrm{~m} / \mathrm{s}$. How much work is done by the batter? Mass of a base ball $=.15 \mathrm{~kg}$.

$$
\begin{aligned}
W=\Delta E & =\Delta E_{p}+\Delta E k \\
& =0+\frac{m v_{f}^{2}}{2}-\frac{m v_{i}^{2}}{2} \\
& =\frac{.15(30.6)^{2}}{2}-\frac{.15(-42)^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{.15}{2}\left(30.6^{2}-42^{2}\right) \\
& =-62.1 \mathrm{~J}
\end{aligned}
$$

When Kyle plays volleyball he does not spike the ball every play. Sometimes he is a team player and sets up his team mate so that they can spike the ball too. If Kyle sets up the ball to a height of 4.3 m and a volleyball weighs .275 kg . How much work has Kyle done if he hit the ball from a height of 2.1 m ?

$$
\begin{aligned}
W=\Delta E & =\operatorname{mg} \Delta h \\
& =.275(9.81)(22) \\
& =5.9 \mathrm{~J}
\end{aligned}
$$

That was too easy. Let's do a tricky one.
The only force we care about is the force that is causing the $\Delta \mathrm{E}$.

If the force is 52 N and θ is 60° and the distance is 12 m . What is the work done?

$$
\begin{aligned}
W & =F d \cos \theta \\
& =\operatorname{mad} \cos \theta \\
& =\frac{52(12)}{2}=52(6)=312 \mathrm{~J}
\end{aligned}
$$

MORE POWER NEEDED

$$
\text { Power }=\frac{\text { Work }}{\text { Time }}=\frac{J}{s}=W a t t=W
$$

One common measurement of power is the horsepower (hp). It is good to note that $1 \mathrm{hp} \approx 750 \mathrm{~W}$. Also important is that one horse has roughly 15hp...

A 100W lightbulb operates for one hour. How much work was done?

$$
\begin{array}{ll}
P=\frac{w}{t} & 3600(100)=w \\
100=\frac{w}{3600} & 360000=w \\
& 360 \mathrm{~kJ}=w
\end{array}
$$

Abbey is pulling Alley in a wagon. She pulls her for 10 m . She pulls at an angle of 32° and applies a force of 210 N for 20s. What power does Abbey produce?

$$
\begin{aligned}
& d=10 \\
& \theta=32 \\
& F=210 . \\
& t=20 \\
& p=?
\end{aligned}
$$

In Kelowna we pay at most $\$ 0.15$ per kW*hr. Does your Mom tell you to turn off the lights? Let's run a 60W (old style) light bulb for 8 hours.

$$
\begin{aligned}
\text { WOW } \rightarrow & .06 \mathrm{~kW} \text { for } 8 \text { hours } \\
& \begin{array}{l}
k W \text { hr } \\
= \\
.06(8)(.15)
\end{array}
\end{aligned}
$$

$$
=.07
$$

Efficiency:
This is how much of the energy that you put into a system is the energy that you want. Some will be wasted.

Look at the total amount of energy that you put into a system, and decide how much of that is what you want.

A 60W light bulb produces 15W of light energy. What is its efficiency?

$$
\frac{15}{60} 100 \%=25 \%
$$

An Easy Bake oven uses this same light bulb to make cupcakes. What is its efficiency?

$$
\frac{45}{60} \times 100 \%=75 \% 1
$$

Chris drops a 5 kg watermelon off of a tall building (20m) and it strikes the ground with a velocity of $15.0 \mathrm{~m} / \mathrm{s}$. How much energy is lost as heat $\left(\mathrm{E}_{\mathrm{H}}\right)$? And, what is the efficiency of the fall?

$$
\begin{aligned}
& E_{p o}+E_{k_{0}}=E_{p f}+E_{k f}+E_{H} \\
& \begin{array}{l}
\operatorname{mgh}^{2}{ }^{6} p \\
\frac{\omega^{2}}{2}=f k
\end{array} \\
& 5(9.81)(20)=\frac{5(15)^{2}}{2}+E_{H}
\end{aligned}
$$

$$
\begin{aligned}
5(9.51)(20)-\frac{5(15)^{2}}{2} & =\epsilon_{H} \\
419 J & =\epsilon_{H} \\
\frac{\text { want }}{\text { total }} & =\frac{E_{k} \text { (after) }}{\epsilon_{p} \text { (bifon) }} \times 100 \%
\end{aligned}
$$

