Sound

- → Sound waves are longitudinal
- → They can only be transmitted if particles are present
- → Sound is made up of a series of compressions (particles are close together) and rarefactions (particles spread out)

Pitch: this is the frequency of the sound wave.

Human hearing range is 20 - 20k Hz.

- → Volume: the volume of a sound is an indication of the magnitude of the energy
 - The greater the energy, the greater the amplitude of the compression, and the louder the sound
 - When comparing sounds we talk about;
 - Intensity: a measure of sound energy per second within a square metre of area

Intensity = $\frac{Power}{4\pi r^2}$

When we talk about sound we are usually referring to Sound Intensity Level (SIL) this is measured in decibels (dB).

Decibels are a log scale. ie: up one number is 10x the energy. You may have come across this with the pH scale. The Richter scale is also a log scale.

Solving this for I: $I = 10^{\left(\frac{SIL}{10} - 12\right)}$

SIL is measured in dB I is measured in Watts/m²

Source of noise

Source	Intensity	Intensity Level	# of Times Greater Than TOH
Threshold of Hearing (TOH)	1*10 ⁻¹² W/m ²	0 dB	100 ~
Rustling Leaves	1*10 ⁻¹¹ W/m ²	10 dB	10 ¹
Whisper	1*10 ⁻¹⁰ W/m ²	(20 dB	102
Normal Conversation	1*10 ⁻⁶ W/m ²	<u>60</u> dB	106)
Busy Street Traffic	1*10 ⁻⁵ W/m ²	70 dB	107
Vacuum Cleaner	1*10 ⁻⁴ W/m ²	80 dB	10 ⁸
Large Orchestra	6.3*10 ⁻³ W/m ²	98 dB	10 ^{9.8}
Walkman at Maximum Level	1*10 ⁻² W/m ²	100 dB	100
Front Rows of Rock Concert	1*10 ⁻¹ W/m ²	110 dB	1011
Threshold of Pain	1*10 ¹ W/m ²	130 dB	10 ¹³
Military Jet Takeoff	1*10 ² W/m ²	140 dB	10 ¹⁴
Instant Perforation of Eardrum	1*10 ⁴ W/m ²	160 dB	1016

What is the intensity of a 40 W speaker at a distance of 3 m?

 $I = \frac{\rho_{av}r}{4\pi r^2} = \frac{40}{4\pi q} = .35 \frac{\sqrt{35}}{\sqrt{35}}$

What is the Sound Intensity Level?

$$5FL = 10 (a_5 \left(\frac{.35}{.0^{-12}} \right)$$

= 115 dB
How much more intense is the sound from the speaker

If the SIL of a speaker is 70 dB at a distance of 3 m, what is the power of the speaker?

 $I_{0} \begin{pmatrix} \frac{70}{10} - 12 \end{pmatrix} = I = \frac{pontr}{4\pi r^{2}} \quad Ponr = 4\pi (9) I 0^{-5}$ = 1.13 mW

(0⁷⁻¹² = pourt 407 r²

In a machine shop the SIL is 90 dB. In a library the SIL is 40 dB. How many times greater is the intensity of the sound in the machine shop?

hint: 100 000 times lader