Completing the Square: It's baaaack...

If you have an equation that does not have an x term, only an x^{2} term, we can take the square root and solve directly.

$$
\begin{aligned}
2 x^{2} & =8 \\
x^{2} & =\frac{8}{2} \\
\sqrt{x^{2}} & = \pm \sqrt{4} \\
x & = \pm 2
\end{aligned}
$$

Here's what you gotta do:

1. Isolate the squared term.
2. Square root both sides
$>$ Remember if you add the square root there are two possible answers \pm must be taken into account.
3. Solve it.

$$
\begin{aligned}
& 18-5 x^{2}=-27 \\
& -5 x^{2}=-27-18 \\
& x^{2}=\frac{-27-18}{\sqrt{x^{2}}= \pm \sqrt{9}} \\
& x= \pm 3
\end{aligned}
$$

$$
\begin{gathered}
(2 x+3)^{2}-25=0 \\
\sqrt{(2 x+3)^{2}}=\sqrt[\pm]{25} \\
2 x+3= \pm 5 \\
2 x+3=5 \quad \text { oR } 2 x+3=-5 \\
x=\frac{5-3}{2} \quad x=-5
\end{gathered}
$$

Does this look familiar?

$$
\begin{aligned}
& (x+3)^{2}-9=0 \\
& \sqrt{(x+3)^{2}}= \pm \sqrt{9} \\
& x+3= \pm 3 \\
& x+3=3 \quad \text { OR } x+3=-3 \\
& x=0 \quad x=-6
\end{aligned}
$$

You do these two:

$$
\begin{array}{|c|c|}
\hline x^{2}+9=0 & 3 x^{2}=8 \\
x^{2}=\frac{8}{3} \\
X \& \mathbb{R} & x= \pm \sqrt{\frac{8}{3}} \\
x=\frac{2 \sqrt{2}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \\
x=\frac{2 \sqrt{6}}{3}
\end{array}
$$

$$
\begin{aligned}
& \frac{x^{2}}{2}-\frac{1}{3}=0 \\
& \frac{x^{2}}{2}=\frac{1}{3} \\
& x^{2}=\frac{2}{3} \\
& x= \pm \sqrt{\frac{2}{3}} \\
& x= \pm \frac{\sqrt{2} \sqrt{3}}{3} \\
& x= \pm \frac{\sqrt{6}}{3}
\end{aligned}
$$

Given the roots, find the equation:

$$
\begin{aligned}
& (x)^{2}=(\pm \sqrt{5})^{2} \\
& x^{2}=5 \\
& x^{2}-5=0
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{2 \pm \sqrt{6}}{32} \\
& (3 x-2)^{2}=(\pm \sqrt{6})^{2} \\
& (3 x-2)^{2}=6 \\
& (3 x-2)^{2}-6=0
\end{aligned}
$$

$$
\begin{aligned}
& 9 x^{2}-12 x+4-6=0 \\
& 9 x^{2}-12 x-2=0
\end{aligned}
$$

HW: pg240
\#4,5ace,13,18

