Why not add a y?

Most of the real and theoretical scenarios that you will come across will be in an equation. Ie: $y=ax^2+bc+c$. The graph will show a region on the cartesian plane with the parabola being the border of solution points.

Remember:

The parabola that $y = ax^2 + bx + c$ is the bound of that divides the Cartesian plane into two regions.

- → When the inequality sign is \leq or \geq , the points on the boundary are part of the $\frac{50}{2000}$ and the line is $\frac{50}{2000}$.
- → When the inequality sign is < or >, the points on the boundary are not part of the _____ and the line is

Solve Graphically:

$$y \le (x-1)^{2} - 4$$

 $+ee+poin+$
 $(0,0)$
 $0 \le (0-1)^{2} - 4$
 $0 \le (0-1)^{2} - 4$
 $0 \le (0-1)^{2} - 4$
 $0 \le (0-1)^{2} - 4$

Steps to graph a quadratic inequality in 2 variables:

- → Complete the square
- → Find your center
 - $\oint y = a(x-p)^2 + q$ Left/Right by p, and up/down by q.
- → Find your next 4 points: Stretched or shrunk by a.
- → Use a test point or see which side of the line y is to find which region is the solution set.

$$y < \frac{1}{2}(x-3)^{2} + 1$$

$$+es + (0)$$

$$0 < -2(0-3) + 1$$

$$0 < -2(9) + 1$$

Reverse Engineer the equation:

