Why not add a y ?
Most of the real and theoretical scenarios that you will come across will be in an equation. Ie: $y=a x^{2}+b c+c$. The graph will show a region on the cartesian plane with the parabola being the border of solution points.

Remember:
The parabola that $y=a x^{2}+b x+c$ is the boundry that divides the Cartesian plane into two regions.
\rightarrow When the inequality sign is \leq or \geq, the points on the boundary are part of the \qquad Sol ${ }^{\wedge}$ and the line is \qquad Solid
\rightarrow When the inequality sign is $<$ or $>$, the points on the boundary are not part of the \qquad Sola and the line is dashed. .

Solve Graphically:

$$
y \leq(x-1)^{2}-4
$$

test point

$\leq(0-1)^{2}-4$
$0 \leq 1-4$
$05-3$

Steps to graph a quadratic inequality in 2 variables:
\rightarrow Complete the square
\rightarrow Find your center
$y=a(x-p)^{2}+q$ Left/Right by p, and up/down by q.
\rightarrow Find your next 4 points: Stretched or shrunk by a.
\rightarrow Use a test point or see which side of the line y is to find which region is the solution set.

$$
\begin{aligned}
& y<\frac{d}{2} 2(x-3)^{2}+\frac{1}{=} \\
& \text { test }(0,0) \\
& 0<-2(0-3)^{2}+1 \\
& 0<-2(9)+1
\end{aligned}
$$

$$
\begin{aligned}
& y \geq x^{2}-4 x-5 \\
& y \geq(x-2)^{2}-4-5 \\
& \frac{y \geq(x-2)^{2}-9}{\operatorname{test}(0, O)} \\
& 0 \geq 0^{2}-4(0)-5 \\
& 0 \geq-5
\end{aligned}
$$

Reverse Engineer the equation:

$$
4 \propto 2
$$

