I hear you like radicals, so I put a radical in your radical, so you can radical while you radical.

It looks tougher than it is... I promise.
We do the same things.

1. Isolate the radical
$>$ Get the root alone on one side of the equation
2. Square both sides
$>$ This gets rid of the radical. Back to easy mode after this!

- Now we just have to do this step one more time.

3. Solve for x
4. Check for extraneous roots
$>$ Sometimes you may find answers that are not allowed. Non Permissible Values (NPV)

$$
\begin{aligned}
& \sqrt{4 x+5}-\sqrt{2 x-1}=2 \\
& (\sqrt{4 x+5})^{2}=(2+\sqrt{2 x-1})^{2} \\
& 4 x+5=4+2 \sqrt{2 x-1}+2 \sqrt{2 x-1}+2 x-1 \\
& 4 x+5=4+4 \sqrt{2 x-1}+2 x-1 \\
& 4 x+5-4-2 x+1=4 \sqrt{2 x-1} \\
& 2 x+2=4 \sqrt{2 x-1} \\
& (x+1)^{2}=(2 \sqrt{2 x-1}) \\
& x^{2}+2 x+1=4(2 x-1) \\
& x^{2}+2 x+1=8 x-4 \\
& x^{2}+2 x-8 x+1+4=0 \\
& x^{2}-\frac{6 x}{\sqrt{y}}+5=0 \\
& \frac{x^{2}-5 x}{x(x-5)-\frac{x+5}{(x-5)}} \\
& (x-5)(x-1)
\end{aligned}
$$

$$
\begin{aligned}
& 7+\sqrt{3 x}=\sqrt{5 x+4}+5 \\
& \sqrt{3 x}=\sqrt{5 x+4}+5-7 \\
& (\sqrt{3 x})^{2}=(\sqrt{5 x+4}-2)^{2} \\
& 3 x=5 x+4-4 \sqrt{5 x+4}+4 \\
& 3 x-5 x-4-4=-4 \sqrt{5 x+4} \\
& -2 x-8=-4 \sqrt{5 x+4} \\
& (x+4)^{2}=(2 \sqrt{5 x+4})^{2} \\
& x^{2}+8 x+16=4(5 x+4) \\
& x^{2}+8 x+16=20 x+16 \\
& x^{2}+8 x-20 x+16-16=0 \\
& x^{2}-12=0 \\
& x(x-12)=0
\end{aligned}
$$

$x=0$ oy $x=12$

$$
\begin{aligned}
& \sqrt{2 x-5}=\sqrt{x+2} \\
& 2 x-5=x+2 \\
& 2 x-x-5-2=0 \\
& x-7=0 \\
& x=7
\end{aligned}
$$

HW: Pg: 301
\#9abc,10

