Sine Law

We can only use SOH CAH TOA when we are dealing with right angle trigonometry.

Many triangles we will come across will not be as favourable...

For this we have the sine law.
In essence: The ratio of the sides to the corresponding angle is the same for all 3 angle/side pairs in any triangle.

Sine Law

EG: In triangle $\mathrm{ABC}, \angle \mathrm{A}=61^{\circ}, \angle \mathrm{B}=36^{\circ}$, and side $\mathrm{c}=1.8 \mathrm{~km}$. Find side a

$$
\begin{aligned}
& \frac{\sin C}{c}=\frac{\sin A}{a}=\frac{\sin B}{b} \\
&\text { 1) } \left.\left.\begin{array}{rl}
\frac{\sin 83}{1.8} & =\frac{\sin 61}{a} \\
a & =\frac{\sin 61(1.8)}{\sin 83} \\
a & =1.59 \mathrm{kn} 83
\end{array} \right\rvert\, \begin{array}{rl}
1.8 & =\frac{\sin 36}{b} \\
& =1.07 \mathrm{kn}
\end{array}\right)
\end{aligned}
$$

EG: In triangle $P Q R, \angle P=36^{\circ}, p=35 \mathrm{~cm}$, and $q=32 \mathrm{~cm}$. Determine $\angle R$ and r.

$$
\begin{array}{r}
\frac{\sin P}{p}=\frac{\sin Q}{q} \\
\frac{\sin 36}{35}=\frac{\sin Q}{32} \\
\sin ^{-1}\left(\frac{32 \sin 36}{35}\right)=Q
\end{array}
$$

$$
\begin{aligned}
\frac{p}{\sin P} & =\frac{r}{\sin R} \\
\frac{35}{\sin 36} & =\frac{r}{\sin (111.5)}
\end{aligned} \quad \Leftrightarrow r=\frac{\sin 111.5(35)}{\sin 36}
$$

The ambiguous case:
If you are given 2 angles and 1 side, then the triangle you solve for is uniquely defined. (AAS \rightarrow Angle Angle Side)

We must be aware of the ambiguous case though:
If you are given an Angle then 2 sides (ASS), we have 2 possible triangles that can be formed.

EG: In $\triangle A B C, \angle A=32^{\circ}, a=24, b=40$ Solve the triangle (solve means all angles and sides).

EG: In $\triangle D E F, \angle D=29^{\circ}, d=19, e=14$. Solve the triangle.

You try:

In $\triangle P Q R, \angle P=33^{\circ}, p=5, q=40$. Solve.

HW: 2.3:
1ac, 2-4bc, 5

