Sine Law

We can only use SOH CAH TOA when we are dealing with right angle trigonometry.

Many triangles we will come across will not be as favourable...

For this we have the sine law.
In essence: The ratio of the sides to the corresponding angle is the same for all 3 angle/side pairs in any triangle.

Sine Law

EG: In triangle $\mathrm{ABC}, \angle \mathrm{A}=61^{\circ}, \angle \mathrm{B}=36^{\circ}$, and side $\mathrm{c}=1.8 \mathrm{~km}$. Find side a and b.

$$
\begin{aligned}
\angle C=180-36-61 \\
=83^{\circ} \\
\frac{\sin A}{a}=\frac{\sin C}{c} \\
\frac{\sin (61)}{a}=\frac{\sin (83)}{1.8} \\
a=\frac{1.8 \sin (61)}{\sin 83} \\
\cong 1.58 \mathrm{~km}
\end{aligned} \quad \begin{aligned}
& \frac{\sin B}{b}=\frac{\sin C}{c} \\
& \frac{\sin (36)}{b}=\frac{\sin (83)}{1.8} \\
&
\end{aligned} \quad \begin{aligned}
&=\frac{1.8 \sin (36)}{\sin (83)} \\
& 1.07 \mathrm{~km}
\end{aligned}
$$

EG: In triangle $\mathrm{PQR}, \angle \mathrm{P}=36^{\circ}, \mathrm{p}=35 \mathrm{~cm}$, and $\mathrm{q}=32 \mathrm{~cm}$. Determine $\angle \mathrm{R}$

$$
\begin{aligned}
\angle R & =180-36-32.5 \\
& =111.5^{\circ}
\end{aligned}
$$

$$
=111.5^{\circ}
$$

$$
\begin{aligned}
& \frac{\sin P}{P}=\frac{\sin Q}{q} \\
& \frac{\sin 36}{35}=\frac{\sin Q}{32} \\
& Q=\sin ^{-1}\left[\frac{32 \sin (3 c)}{35}\right] \\
& \cong 32.5^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) }
\end{aligned}
$$

The ambiguous case:
If you are given 2 angles and 1 side, then the triangle you solve for is uniquely defined. (AAS \rightarrow Angle Angle Side)

We must be aware of the ambiguous case though:
If you are given Angle then 2 sides (ASS), we have 2 possible triangles that can be formed.

EG: In $\triangle A B C, \angle A=32^{\circ}, a=24, b=40$ Solve the triangle (solve means all angles and sides).

$$
\begin{aligned}
& \text { Case } 1 \\
& \text { Big } \triangle
\end{aligned}
$$

$$
\frac{\sin A}{a}=\frac{\sin B}{b}
$$

$$
\frac{\sin 32}{24}=\frac{\sin 86}{2}
$$

$$
\frac{\sin 32}{24}=\frac{\sin B}{40}
$$

$$
B=\sin ^{-1}\left[\frac{40 \sin (32)}{24}\right]
$$

$$
c=\frac{24 \sin (86)}{\sin (32)}
$$

$$
=45 u
$$

$$
\begin{aligned}
& \angle C=180-32-62 \\
&=86^{\circ} \\
& \angle C=180-118-32 \\
&=30^{\circ} \\
& \frac{\sin A}{a}=\frac{\sin C}{C} \\
& \frac{\sin 32}{24}=\frac{\sin 30}{C=\frac{24 \sin (30)}{\sin 32}}
\end{aligned}{ }^{C=} \quad \begin{aligned}
& C=226 u
\end{aligned}
$$

EG: In $\triangle D E F, \angle D=29^{\circ}, d=19, e=14$. Solve the triangle.

$$
\begin{aligned}
& \frac{\sin \theta}{d}=\frac{\sin \epsilon}{e} \\
& \frac{\sin (29)}{19}=\frac{\sin \epsilon}{14} \\
& \epsilon=\sin ^{-1}\left[\frac{14 \sin (29)}{19}\right] \\
& =20.9^{\circ}
\end{aligned}
$$

$$
\left\{\begin{aligned}
& \angle F=180-20.9-29 \\
&=130.1^{\circ} \\
& \frac{\sin (29)}{19}=\frac{\sin (130.1)}{f} \\
& f=\frac{\sin (130.1)(19)}{\sin (29)} \\
&=30 \mathrm{a} .
\end{aligned}\right.
$$

You try:
In $\triangle P Q R, \angle P=33^{\circ}, p=5, q=40$. Solve.
 HINT 6
2.3 (For Monica that's page $108 \rightarrow$ good morning)

$$
1 a c, 2-4 b c, 5
$$

$$
\begin{array}{l|l}
\frac{\sin A}{a}=\frac{\sin B}{b} & \frac{10}{5}=\frac{20}{10} \\
\frac{b \sin A}{a}=\sin B & 10(10)=5(20) \\
b \sin A=a \sin B & \frac{10}{20}=\frac{5}{10} \\
\frac{b}{\sin B}=\frac{a}{\sin A} &
\end{array}
$$

