Solutions to Lesson 4

1. $p=m v$
2. $p=m v$
3. Both involve a velocity change over an equal time period. We need to figure out which was the greater $\Delta \mathrm{v}$.
$>$ In case $a, \Delta v=8$. In case $b, \Delta v=4 . \therefore$ case a has the largest acceleration, momentum and impulse.
4. Again, we need to find the largest Δv. Both cases have roughly the same v_{0}. Case a has a slower velocity than case b. \therefore case b has the greatest a, p, and I.
5.

	Force	Time	Impulse	$\Delta \mathrm{p}$	m	$\Delta \mathrm{v}$
1	$-4,000$	0.010	-40	-40	10	-4
2	-400	0.100	-40	-40	10	-4
3	$-20,000$	0.010	-200	-200	50	-4
4	$-20,000$	0.010	-200	-200	25	-8
5	-200	1.0	-200	-200	50	-4

$>$ Hint, for those of you that actually checked this page, I am not wondering whether or not to put a chart like this on the test, I am only wondering how many marks it will be out of!
6. They're the same.
7. Balloon B went faster in the same amount of time. It's Δv was the biggest and as well as its $\Delta \mathrm{a}$.
8. If you start at $5 \mathrm{~m} / \mathrm{s}$ and end at $-4 \mathrm{~m} / \mathrm{s}$ that is a larger Δv than if you ended at $0 \mathrm{~m} / \mathrm{s}$.
9.

$$
\begin{gathered}
\Delta \mathrm{p}=\mathrm{m} \Delta \mathrm{v} \\
=50(0-35)=\mathrm{Ft} \\
-1750=\mathrm{F}(.5) \\
\mathrm{F}=3.5 \mathrm{KN}
\end{gathered}
$$

10. 875 KN
11. 8 Ns
12. 1 Ns
