2 Dimensional conservation of momentum $=p$ $\Delta p=F \cdot t=$ impulse

The key to your success is a good vector diagram.
A cat of mass 10 kg moving east at $5.0 \mathrm{~m} / \mathrm{s}$ collides with a 4.0 kg cat at rest. The 10.0 kg Cat travels away with a velocity of $3.2 \mathrm{~m} / \mathrm{s}$ at $27^{\circ} \mathrm{N}$ from E . what is the velocity of the other cat?

A 10 kg cat runs at $10 \mathrm{~m} / \mathrm{s}[\mathrm{E}]$ toward a spike, it splits into 2 parts, a 4.0 kg mass travels at $8.0 \mathrm{~m} / \mathrm{s}$ at $45^{\circ} \mathrm{S}$ of E what is the velocity of the other piece?

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2}-2 a b \cos \theta \\
& =100^{2}+32^{2}-2(\cos)(32) \cos (4-1)
\end{aligned}
$$

$$
=80.6 \mathrm{Ns}
$$

$$
\theta \Rightarrow \frac{\sin 45}{80.6}=\frac{\sin \theta}{32}
$$

$$
\begin{aligned}
& \begin{aligned}
\theta & =\sin ^{-1}\left[\frac{32 \sin 45}{80.6}\right] \\
& =16.3 \text { N, } F E .
\end{aligned} \\
& \begin{array}{l}
\rho=m V \\
80.6=6 \mathrm{~V}
\end{array} \\
& \begin{array}{l}
\rho=m V \\
80.6=6 \mathrm{~V}
\end{array} \\
& \frac{80.6}{6}=V=\begin{array}{r}
13.4 \mathrm{w} / \mathrm{s} \\
\text { @ } 16.3^{\circ} \mathrm{Nof} f .
\end{array}
\end{aligned}
$$

A cat of mass 10 kg at rest is exploded into 3 pieces. A 2.5 kg piece travels off at $20 \mathrm{~m} / \mathrm{s}$ at $30^{\circ} \mathrm{N}$ from W , a 3.0 kg mass travels due south at $17 \mathrm{~m} / \mathrm{s}$ find the velocity of the 3 rd niece

A cat oi mass tu kg at rest is expioued into s pieces. A $<. כ$ kg piece travels off at $20 \mathrm{~m} / \mathrm{s}$ at $30^{\circ} \mathrm{N}$ from W , a 3.0 kg mass travels due south at $12 \mathrm{~m} / \mathrm{s}$ find the velocity of the 3rd piece.

You had better draw momentum vectors!
Redraw in tip to tail fashion:

COSINE LAW saves the day

A mass of a 5.0 kg is travelling due East at $20 \mathrm{~m} / \mathrm{s}$ when an explosion separates it into exactly 2 pieces, a 1.5 kg mass travels at $50^{\circ} \mathrm{N}$ of E and the other mass travels off at 25° from the original path. Determine the speed of each piece.

$$
p_{2}=79.3=m v
$$

$$
=3.5 \mathrm{~V}
$$

$$
v=22.7
$$

$$
\begin{aligned}
& P_{1} \Rightarrow 29.2 \mathrm{~m} / \mathrm{s} \\
& P_{2} \Rightarrow 22.7 \mathrm{r} / \mathrm{s} \\
& P_{2} \Rightarrow \frac{\sin 50(100)}{\sin 105}=79.3 \\
& P_{1} \Rightarrow \frac{\sin 25}{P_{1}}=\frac{\sin 105}{100} \\
& \rho_{1}=\frac{\sin 25(100)}{\sin 105}=43.8 \\
& P_{1}=43.8=\mathrm{mv} \\
&=1.5 \mathrm{~V} \\
& v=24.2
\end{aligned}
$$

