Completing the Square

We have seen the advantages of having our quadratic equation in vertex form.

$$
f(x)=a(x-p)^{2}+q
$$

This is very nice for graphing as we can find the shift p, stretches, and reflection very easily.

Completing the square is a useful technique for getting the vertex form of the equation when you begin with the standard form.

$$
f(x)=A x^{2}+B x+C
$$

Example 1:

Complete the square for:

Here'show to do it:

1. Group the x-terms together.
2. Divide the ' x ' coefficient by 2 , Then square it. ie: $\left(\frac{B}{2}\right)^{2}$
3. Add and subtract that value to your equation.
4. The result will be a perfect square. ie: easy factoring.

$$
\begin{aligned}
& y=\left(x^{2}-8 x\right)+5 \\
& y=\left(x^{2}-8 x+16-16\right)+5 \\
& y=(x-4)^{2}-16+5 \\
& y=(x-4)^{2}-11 \\
& \quad a=1 \quad p=4 \quad q=-11
\end{aligned}
$$

goal \rightarrow Standard
vertex

$$
\begin{aligned}
& y=\left(x^{2}+6 x\right)+5 \\
&+9-9 \\
& \text { Square } \\
& y=(x+3)^{2}-9+5 \\
& y=(x+3)^{2}-4
\end{aligned}
$$

You try:

$$
\begin{aligned}
f(x) & =x^{2}-10 x+6 \quad| | \mid \quad y=x^{2}-4 x-3 \\
& =(x-5)^{2}-25+6 \mid y=(x-2)^{2}-4-3 \\
& =(x-5)^{2}-19 \quad \mid y=(x-2)^{2}-7
\end{aligned}
$$

Rewrite into vertex form:
aka: complete the square to get standard form into vertex form.

$$
\begin{aligned}
& f(x)=x^{2}+5 x-2 \\
& f(x)=\left(x+\frac{5}{2}\right)^{2}-\frac{25}{4}-2 \\
& f(x)=\left(x+\frac{5}{2}\right)^{2}-\frac{25-8}{4} \\
& f(x)=\left(x+\frac{5}{2}\right)^{2}-\frac{17}{4}
\end{aligned}
$$

What if the coefficient in front of x^{2} isn't equal to one? Complete the square:

$$
\begin{aligned}
& 3\left(x^{2}-4 x\right) \\
& f(x)=3 x^{2}-12 x-9 \\
& \begin{aligned}
3\left(x^{2}-4 x+4-4\right) & =3\left(x^{2}-4 x\right)-9 \\
3(x-2)(x-2)-4] & =3(x-2)^{2}-4(3)-9
\end{aligned} \\
& 3[(x-2)(x-2)-4]=3(x-2)^{2}-21 \\
& y=-x^{2}+6 x-7 \\
& y=-\left(x^{2}-6 x\right)-7 \\
& y=-(x-3)^{2}-9(-1)-7 \\
& y=-(x-3)^{2}+2 \\
& f(x)=-2 x^{2}+8 x-5 \\
& f(x)=-2\left(x^{2}-4 x\right)-5 \\
& =-2(x-2)^{2}-4(-2)-5 \\
& =-2(x-2)^{2}+3
\end{aligned}
$$

You try this one:

$$
f(x)=3 x^{2}+9 x-2
$$

hint keep the fractions. Fractions are your friend.
\rightarrow complete the square
\rightarrow state the vertex
\checkmark max or min
\checkmark axis of symmetry
\rightarrow domain
\rightarrow range

$$
\left(-\frac{3}{2},-\frac{19}{4}\right)
$$

$$
f(x)=3\left(x^{2}+3 x\right)-2
$$

$$
=3\left(x+\frac{3}{2}\right)^{2}-\frac{9(3)}{4}-2
$$

$$
=3\left(x+\frac{3}{2}\right)^{2}-\frac{27-8}{4}
$$

$\min e x=-\frac{19}{4}$ $=3\left(x+\frac{3}{2}\right)^{2}-\frac{19}{4}$

$$
x=-\frac{3}{2}
$$

$\left\{x(x \in \mathbb{R}\} \quad\left\{y \left\lvert\, y \geq-\frac{19}{4}\right., y \in \mathbb{R}\right\}\right.$

HW: pg 192, Q:2,5,6,7,12ace (coefficient of one) pg 192, Q:3,4,6bcd,7bc,8bc (not a coefficient of one)

