
Completing the Square

We have seen the advantages of having our quadratic equation in
vertex form.

𝑓(𝑥) = 𝑎(𝑥 − 𝑝)2 + 𝑞
This is very nice for graphing as we can find the shifts, stretches,
and reflection very easily.

Completing the square is a useful technique for getting the vertex
form of the equation when you begin with the standard form.

𝑓(𝑥) = 𝐴𝑥2 + 𝐵𝑥 + 𝐶

Example 1:
Complete the square for:

𝑦 = 𝑥2 − 8𝑥 + 5
Here’s how to do it:

1. Group the x-terms together.

2. Divide the ‘x’ coefficient by 2, Then square it. ie: 𝐵
2( )2

3. Add and subtract that value to your equation.
4. The result will be a perfect square. ie: easy factoring.
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𝑦 = 𝑥2 + 6𝑥 + 5

You try:

|||𝑓(𝑥) = 𝑥2 − 10𝑥 + 6 𝑦 = 𝑥2 − 4𝑥 − 3
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Re-write into vertex form:
aka: complete the square to get standard form into vertex form.

𝑓(𝑥) = 𝑥2 + 5𝑥 − 2
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What if the coefficient in front of x2 isn’t equal to one?
Complete the square:

𝑓(𝑥) = 3𝑥2 − 12𝑥 − 9

𝑦 =− 𝑥2 + 6𝑥 − 7

𝑓(𝑥) =− 2𝑥2 + 8𝑥 − 5
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You try this one:

𝑓(𝑥) = 3𝑥2 + 9𝑥 − 2
hint: keep the fractions. Fractions are your friend.
➔ complete the square
➔ state the vertex
➔max or min
➔ axis of symmetry
➔ domain
➔ range

HW: pg192, Q:2,5,6,7,12ace (coefficient of one)
pg192, Q:3,4,6bcd,7bc,8bc (not a coefficient of one)
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