$$
\begin{gathered}
y=a(x-p)^{2}+q \quad y=a x^{2}+b x+c \\
\text { Completing the Square }
\end{gathered}
$$

We have seen the advantages of having our quadratic equation in vertex form.

$$
f(x)=a(x-p)^{2}+q
$$

This is very nice for graphing as we can find the shifts stretches, and reflection very easily.

Completing the square is a useful technique for getting the vertex form of the equation when you begin with the standard form.

$$
f(x)=A x^{2}+B x+C
$$

Example 1:
Complete the square for:

$$
y=x^{2}-8 x+5
$$

Here's how to do it:

1. Group the x-terms together.
2. Divide the ' x ' coefficient by 2 , Then square it. ie: $\left(\frac{B}{2}\right)^{2}$
3. Add and subtract that value to your equation.
4. The result will be a perfect square. ie: easy factoring.

$$
\begin{aligned}
& y=\left(\left(x^{2}-8 x+16\right)-16+5\right. \\
& m \rightarrow 16 \\
& a \rightarrow-8 \\
& y=(x-4)(x-4)-11 \\
& y=(x-4)^{2}-11
\end{aligned}
$$

$$
\begin{gathered}
y=x^{2}+6 x+5 \\
y=\left(1 x^{2}+6 x+9\right)-9+5 \\
y=(x+3)^{2}-4
\end{gathered}
$$

You try:
hint:

$$
\left.\begin{aligned}
& f(x)=x^{2}-10 x+6 \\
& f(x)=(x-5)^{2}+6-25 \\
&=(x-5)^{2}-19
\end{aligned} \right\rvert\, \begin{aligned}
& y=x^{2}-4 x-3 \\
& y=\left(x^{2}-4 x+4\right)-4-3 \\
& y=(x-2)^{2}-7
\end{aligned}
$$

Rewrite into vertex form:
aka: complete the square to get standard form into vertex form.

$$
\begin{aligned}
& f(x)=x^{2}+5 x-2 \\
& f(x)=\left(x+\frac{5}{2}\right)^{2}-\left(\frac{5}{2}\right)^{2}-2 \\
& f(x)=\left(x+\frac{5}{2}\right)^{2}-\frac{25}{4}-2 \\
& f(x)=\left(x+\frac{5}{2}\right)^{2}-\frac{25-8}{4} \\
& f(x)=\left(x+\frac{5}{2}\right)^{2}-\frac{17}{4}
\end{aligned}
$$

What if the coefficient in front of x^{2} isn't equal to one?
Complete the square:

$$
\begin{aligned}
f(x) & =3 x^{2}-12 x-9 \\
& =3\left(x^{2}-4 x-3\right) \\
& =3\left(x^{2}-4 x+4-4-3\right) \\
& \left.=3(x-2)^{2}-7\right) \\
& =3(x-2)^{2}-21 \\
y & =-x^{2}+6 x-7 \\
y & =-\left(x^{2}-6 x+7\right) \\
y & =-\left[(x-3)^{2}+7-9\right] \\
y & =-\left((x-3)^{2}-2\right] \\
y & =-(x-3)^{2}+2 \\
f(x) & =-2 x^{2}+8 x-5 \\
f(x)= & -2\left(x^{2}-4 x\right) \\
= & -2\left(x^{2}-2\right)^{2}+8 \\
= & -2(x-2)^{2}+3
\end{aligned}
$$

You try this one:

$$
f(x)=3 x^{2}+9 x-2
$$

hint: keep the fractions. Fractions are your friend.
\rightarrow complete the square
\rightarrow state the vertex
\rightarrow max or min
\rightarrow axis of symmetry
\rightarrow domain
\rightarrow range

$$
\begin{aligned}
& f(x)=3\left(x^{2}+3 x\right)-2 \\
& f(x)=3\left(x+\frac{3}{2}\right)^{2}\left(-\left(\frac{3}{2}\right)^{2}(3)\right)-2 \\
& f(x)=3\left(x+\frac{3}{2}\right)^{2}-\frac{27}{2}-2 \\
& f(x)=3\left(x+\frac{3}{2}\right)^{2}-\frac{27-4}{2} \\
& f(x)=3\left(x+\frac{3}{2}\right)^{2}-\frac{23^{2}}{2}
\end{aligned}
$$

HW: pg 192, Q:2,5,6,7,12ace (coefficient of one) pg 192, Q:3,4,6bcd,7bc,8bc (not a coefficient of one)

