Everyone Loves Word Problems!
Let's start by solving some quadratic inequalities:

$$
\begin{aligned}
& y \geq 3 x^{2}-12 x+9 \\
& y \geq 3\left(x^{2}-4(x)+9\right. \\
& y \geq 3(x-2)^{2}-12+9 \\
& y \geq 3(x-2)^{2}-3 \\
& \text { vertex }(2,-3) \\
& \text { test }(0,0) \\
& 23(0)^{2}-12(0)+9 \\
& 0 z \text { ta False } \\
& y<-\frac{x^{2}}{3}-\frac{2 x}{3}+\frac{11}{3} \\
& y<-\frac{1}{3}\left(x^{2}+2 x\right)+\frac{11}{3} \\
& y<-\frac{1}{3}(x+1)^{2}+\frac{1}{3}+\frac{11}{3} \\
& y<-\frac{1}{3}(x+1)^{2}+4 \\
& (-1,4) \quad 0<\frac{15}{3}
\end{aligned}
$$

You can use a parabolic reflector to focus sound, light, or radio waves to a single point. A parabolic microphone has a parabolic reflector attached that directs incoming sounds to the microphone. A reporter on the sidelines of a $B C$ Lion game points the microphone at the field to pick up the game sounds. If the microphone has a depth of 15 cm and a width of 50 cm , what is the region that the
microphone can pick up?

A satellite dish is 60 cm in diameter and 20 cm deep. The dish has a parabolic cross-section.
A. Sketch the parabola that represents this dish.
B. Determine the inequality that this

$$
\pm \begin{gathered}
\pm \\
\hline
\end{gathered}
$$

$$
\begin{aligned}
& y \geq A(x-b)^{2}+l \\
& y \geq A(x-0)^{2}-20 \\
& y \geq A x^{2}-20 \\
& 0=A(30)^{2}-20 \\
& \frac{20}{30^{2}}=A>45
\end{aligned}
$$

Sports climbers use synthetic ropes to assure belays or rappels. A rope can safely support a mass, m, in kg , modelled by the inequality $m \leq 980 d^{2}$ where d, is the diameter of the rope in cm .
A. Graph the inequality
B. What mass can an 8 mm diameter rope support?
C. What mass can a 10.4 mm diameter rope support?
D. What diameter rope would be needed to support a 3.5 ton whale?

$$
\begin{aligned}
& m \leq 980 d^{2} \\
& m \leq 980(.8)^{2} \\
& m \leq 627.2 \\
& m \leq 630 \mathrm{~kg} \\
& m \leq 980(1.04)^{2} \\
& m \leq 1059 \mathrm{~kg}^{m} \\
& \frac{m 500}{950} \leq d^{2} \\
& 3.5>d^{2} \\
& \sqrt{3.6} \leq d^{2} \\
& 1.89 \leq d \\
& 1.9 \mathrm{~cm} \leq d
\end{aligned}
$$

