Potential at Infinity

We got used to calculating potential energy on Earth...
What about in space? How much sense does it make to calculate a height from Earth when you are approaching Betelgeuse?

That place to measure from is infinity (∞).
$\mathrm{E}_{\mathrm{p}} @ \infty=0 \mathrm{~J}$.
That energy will increase as the object approaches a mass.

$$
E_{P}=-\frac{G m_{1} m_{2}}{r}
$$

NOTE: IS THE r SQUARED?

Calculate the E_{p} of a $5,000 \mathrm{~kg}$ super pug at a distance of $3.0 \times 10^{7} \mathrm{~m}$ from the Earth's center.

We can also calculate the work done / required...
Work / Energy Theorem:

$$
W=\Delta E=E_{p f}-E_{p 0}
$$

A mass of $5,000 \mathrm{~kg}$ is moved from $2.0 \times 10^{7} \mathrm{~m}$ distance to $3.0 \times 10^{7} \mathrm{~m}$ distance (from the center of Earth). Find the work done.

A 10 kg pug on the surface of the Earth has $4.0 \times 10^{8} \mathrm{~J}$ of work done on it, to what maximum height will it rise?

The Law of Conservation of Energy still applies. *remember from physics 11*

$$
E_{p 0}+E_{k 0}=E_{p f}+E_{k f}+Q
$$

We can disregard Q in space.
Typical situations where we can use this formula:
a) An object moving in space crashing into Earth (any planet)
b) An object moving in space to some closer distance to Earth
c) An object on the Earth moving into space

A comet of mass $1.0 \times 10^{7} \mathrm{hg}$ is $4.0 \times 10^{9} \mathrm{~m}$ from Earth's center. It is moving at $2500 \mathrm{~m} / \mathrm{s}$ and crashes into the Earth's surface. What is the impact speed?

$$
E_{p 0}+E_{k 0}=E_{p f}+E_{k f}+Q
$$

Hint: $\mathrm{v}_{\mathrm{f}}=11.4 \mathrm{~km} / \mathrm{s}$

A pug is blasted off of the moon at $1.3 \mathrm{~km} / \mathrm{s}$ from the surface. To what height will it rise before coming to a rest?
$\mathrm{m}_{\text {moon }}=7.35 \times 10^{22} \mathrm{~kg}$
$r_{\text {moon }}=2.48 \mathrm{Mm}$
Hint: height=750km

Escape Velocity: is defined as the velocity at a planet's surface necessary To ESCAPE to infinity, you can stop when you reach infinity. Escape Velocity Is found using Conservation of Energy.

Orbital relationship between E_{p} and E_{k}.

