Cosine Law

Use the Sine Law if:
\rightarrow You are given 2 angles and 1 side
\rightarrow You are given 2 sides and the 1 angle is opposite a given side

Use the Cosine Law if:
$\rightarrow 2$ Sides and the given angle is between them
$\rightarrow 3$ sides

The cosine law is an adjustment to the pythagorean theorem.

The pythagorean theorem can only be used for right angle triangles.

$$
\begin{gathered}
\overline{C D}=x \text { and } \overline{D A}=b-x \\
\triangle B C D: \cos (C)=\frac{x}{a} \\
a \cdot \cos (C)=x
\end{gathered}
$$

$$
\text { and } a^{2}=h^{2}+x^{2}
$$

$$
\begin{gathered}
c^{2}=h^{2}+(b-x)^{2} \\
c^{2}=h^{2}+b^{2}-2 b x+x^{2} \\
c^{2}=h^{2}+x^{2}+b^{2}-2 b x \\
c^{2}=a^{2}+b^{2}-2 b a \cdot \cos (C) \\
a^{2}=b^{2}+c^{2}-2 b c \cos (A) \\
b^{2}=a^{2}+c^{2}-2 a c \cos (B)
\end{gathered}
$$

Law of Cosines:

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 \cdot b \cdot c \cdot \operatorname{Cos}(A) \\
& b^{2}=a^{2}+c^{2}-2 \cdot a \cdot c \cdot \operatorname{Cos}(B) \\
& c^{2}=a^{2}+b^{2}-2 \cdot a \cdot b \cdot \operatorname{Cos}(C)
\end{aligned}
$$

EG: A surveyor needs to find the length of a swampy area near Fish Lake. She sets her transit at point A. She measures the distance to one end of the samp as 468 m (point B) and the distance to the other side of the swamp as 692 m (point C). The angle between the two points $(\angle A)$ is 78°. Determine the length of the swampy area to the nearest meter.

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
& =692^{2}+468^{2}-2(642)(468) \cos (78) \\
a & \cong 750 m
\end{aligned}
$$

The Lion's Gate bridge in Vancouver is strengthened by triangular braces. Suppose the braces lengths are $14 \mathrm{~m}, 19 \mathrm{~m}$, and 12.2 m . Determine the measure of the angle opposite the 14 m side to the nearest degree.

$$
\begin{aligned}
& \angle A=? \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& \frac{a^{2}-b^{2}-c^{2}}{-2 b c}=\cos A \\
& A=\cos ^{-1}\left[\frac{a^{2}-b^{2}-c^{2}}{-2 b c}\right]^{\prime} \\
& A \cong 47.4^{\circ} \rightarrow 47^{\circ}
\end{aligned}
$$

In $\triangle A B C$: $a=11, b=5, \angle C=20^{\circ}$. Determine the length of the unknown side and the measures of the 2 unknown angles to the nearest tenth.

$$
\begin{aligned}
& C^{2}=b^{2}+a^{2}-2 b a \cos C \\
& \cong \frac{6.53 a}{\sin C}=\frac{\sin A}{a} \\
& \frac{\sin 20}{2} \quad \begin{aligned}
\sin A
\end{aligned} \\
& =124.8^{\circ}
\end{aligned}
$$

$$
\frac{\sin 20}{6.53}=\frac{\sin A}{11}
$$

$$
A=\sin ^{-1}\left[\frac{11 \sin 20}{6.53}\right]
$$

$$
=35.2^{\circ}
$$

In $\triangle P Q R: q=24, r=18, \angle P=120^{\circ}$. Solve the triangle.
Hint:

