Cosine Law

Use the Sine Law if:
\rightarrow You are given 2 angles and 1 side
\rightarrow You are given 2 sides and the 1 angle is opposite a given side

Use the Cosine Law if:
$\rightarrow 2$ Sides and the given angle is between them
$\rightarrow 3$ sides

The cosine law is an adjustment to the pythagorean theorem.

The pythagorean theorem can only be used for right angle triangles.

$$
\begin{gathered}
\overline{C D}=x \text { and } \overline{D A}=b-x \\
\triangle B C D: \cos (C)=\frac{x}{a} \\
a \cdot \cos (C)=x \\
\text { and } a^{2}=h^{2}+x^{2}
\end{gathered}
$$

Law of Cosines:

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 \cdot b \cdot c \cdot \operatorname{Cos}(A) \\
& b^{2}=a^{2}+c^{2}-2 \cdot a \cdot c \cdot \operatorname{Cos}(B) \\
& c^{2}=a^{2}+b^{2}-2 \cdot a \cdot b \cdot \operatorname{Cos}(C)
\end{aligned}
$$

EG: A surveyor needs to find the length of a swampy area near Fish Lake. She sets her transit at point A. She measures the distance to one end of the samp as 468 m (point B) and the distance to the other side of the swamp as 692 m (point C). The angle between the two points $(\angle A)$ is 78°. Determine the length of the swampy area to the nearest meter.

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
& =692^{2}+468^{2}-2(692)(468) \cos 28 \\
a & =750 m
\end{aligned}
$$

The Lion's Gate bridge in Vancouver is strengthened by triangular braces. Suppose the braces lengths are $14 \mathrm{~m}, 19 \mathrm{~m}$, and 12.2 m . Determine the measure of the angle opposite the 14 m side to the nearest degree.

$$
\begin{array}{r}
14^{2}=19^{2}+12.2^{2}-2(19)(12.2) \cos A \\
\cos ^{-1}\left(\frac{14^{2}-19^{2}-12.2^{2}}{-2(19)(12.2)}\right)=A \\
47.4^{\circ}=A
\end{array}
$$

In $\triangle A B C: a=11, b=5, \angle C=20^{\circ}$. Determine the length of the unknown side and the measures of the 2 unknown angles to the nearest tenth.

$$
\begin{aligned}
C^{2} & =5^{2}+11^{2}-2(5)(11) \cos (20) \\
C & =6.53 \\
& \frac{\sin A}{11}=\frac{\sin 20}{6.5295} \\
B \quad A & =\sin ^{-1}\left(\frac{11 \sin 20}{6.5295}\right) \\
A & =35.18^{\circ} \\
B & =180-35.2-20 \\
& =124.8^{\circ}
\end{aligned}
$$

In $\triangle P Q R: q=24, r=18, \angle P=120^{\circ}$. Solve the triangle.

$$
\begin{aligned}
& C^{2}=a^{2}+6^{2}-2 a b \cos C \\
& P^{2}=24^{2}+18^{2}-2(24)(18) \cos (120) \\
& P=36.5 \\
& \frac{\sin 60}{36.5}=\frac{\sin R}{18} \\
& R=\sin ^{-1}\left(\frac{903}{36.5}\right) \\
& R=25.3^{\circ} \\
& Q=180-25.3-36.5 \\
& =34.7^{\circ}
\end{aligned}
$$

In $\triangle A B C: a=11, b=15, \angle A=20^{\circ}$. Solve the triangle.

$$
\begin{aligned}
& \frac{\sin B}{15}=\frac{\sin 20}{11} \\
& B=\sin ^{-1}\left(\frac{15 \sin ^{20}}{41}\right) \\
& B=27.8^{\circ}
\end{aligned}
$$

$$
\sin (20)=\frac{h}{15}
$$

MW:

$$
15 \sin 20=n
$$

1-3, 7-10

