Quadratic Functions Word Problems

Ex. \#1: The following function gives the height, $\mathrm{h}(\mathrm{t})$ metres, of a batted baseball as a function of the time, t seconds, since the ball was hit:

$$
h(t)=-6(t-2.5)^{2}+38.5
$$

(a) What is the maximum height of the ball?

$$
h=38.5
$$

(b) What was the height of the ball when it was hit?

$$
\begin{aligned}
h(t) & =-6(0-2.5)^{2}+38.5 \\
& =-6(2.5)^{2}+38.5 \\
& =1 \mathrm{~m}
\end{aligned}
$$

(c) How many seconds after the ball was hit did the ball hit the ground, to the nearest second?

$$
\begin{aligned}
& h(t)=-6(t-2.5)^{2}+38.5 \\
& 0=-6(t-2.5)^{2}+38.5 \\
& \pm \sqrt{\frac{-38.5}{-6}}+\frac{2.5}{5.0}=t \\
&-0.03=t
\end{aligned}
$$

(d) Find the height of the ball 1 s after it was hit?

$$
\begin{aligned}
h(t) & =-6(t-2.5)^{2}+38.5 \\
h(1) & =-6(1-2.5)^{2}+38.5 \\
& =25 \mathrm{~m}
\end{aligned}
$$

Ex. \#2: The mirror from a telescope has a diameter of 60 cm and a maximum depth of about 0.36 cm . Suppose a coordinate grid is placed at the vertex, write an equation for the curve.

Ex. \#3: A theatre company has 300 season ticket subscribers. The theatre has decided to raise the price of a season ticket from its current price of $\$ 400$. A survey of the subscribers has determined that for every $\$ 20$ increase in price, 10 subscribers would not renew their seasons tickets.
(a) What is the maximum revenue the theatre will generate?

$$
\begin{aligned}
& \begin{aligned}
R & =p q \quad n \rightarrow \text { number } \\
e_{e}^{0 v} b^{000} R(n) & =(400+20 n)(300-10 n) \\
& =120000-4000 n+60001-200 a^{2}
\end{aligned} \\
& =-200 n^{2}+2000 n+120000 \\
& =-200\left(n^{2}-10 n\right)+120000 \\
& =-200(n-5)^{2}+25(200)+120000 \\
& =-200(n-5)^{2}+125,000
\end{aligned}
$$

(b) What ticket price will maximize revenue?

$$
\begin{aligned}
\text { ticket } & =\$ 400+5(20) \\
& =5500
\end{aligned}
$$

