## Chapter 1 - Transformational Graphing

1.1 Translating Graphs
quadra..C Graphs can be translated (slid/moved) left/right and/or up/down.

- Review-from Math 11.


In math 11 we looked at the idea of placing the vertex and then plotting the respective points. Another way of looking at the function is to translate it 2 units right and 3 units down


Written/Edited by:

This also works for general functions $(\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x}), \mathrm{k}(\mathrm{x}) \ldots)$. For example, given the graph of $y=f(x)$ sketch a graph of $y=f(x-2)+3$.


Points on graphs can be moved as well.
Ex. The point $(2,3)$ is on the graph of $y=f(x)$ then what point must be on the graph of $y=f(x+4)-2$ ?

## In general:

The function $y=f(x)$ with the function $y=f(x \pm h) \pm k$ has been translated $h$ units left/right and $k$ units up/down. This process affects: domain/range, the graph itself, individual points.

$$
\begin{aligned}
& \{x \mid 0 \leq x \leq 10, x \in \mathbb{R}\} \\
& \{x \mid 2 \leq x \leq 12, x \in \mathbb{R}\} \\
& y=\underset{\text { left/right }}{(x-p)^{2}}+q \text { url down }
\end{aligned}
$$

