- Graphs can be expanded/compressed vertically and horizontally

Vertical Expansions/Compressions

Horizontal Expansions/Compressions

Written/Edited by:

This also works for general functions $(\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x}), \mathrm{k}(\mathrm{x}) \ldots)$. For example, given the graph of $y=f(x)$ sketch a graph of $y=2 f(3 x)$

Points on graphs can be expanded and compressed as well.
Ex. The point $(2,3)$ is on the graph of $y=g(x)$ then what point must be on the graph of $y=-3 g\left(\frac{1}{2} x\right) ?\left(\frac{2}{2}, 3(-3)\right) \leadsto(1,-q)$

In general:
The function $y=f(x)$ with the function $y=a f(x)$ has been

- Vertically Expanded if a>1 or $a<-1$
- Vertically Compressed if $-1<a<1 \quad(a \neq 0)$

The function $y=f(x)$ with the function $y=f(b x)$ has been

- Horizontally Expanded if $-1<b<1 \quad(b \neq 0)$
- Horizontally Compressed if $b>1$ or $b<-1$

New Word: INVARIANT POINT is a point that doesn't move after it has been affected by a transformation.

