

Written/Edited by:

Epp/Poelzer/Smith/Turner/Presta/Robertson/Simpson/Morgan/Hilton

Note: when you switch x & y in the function, most likely graph will change and so will the domain and range.

Notice that the inverse of a function isn't always a function.	
	Domain:
2-	$\{X \mid X \in \mathbb{R}\}$
	Range:
	{y y 2-2, y ER3
	Inverse
	Sich 2 2 X C K
	$(X X - a_1 \land \in m)$
	Range
	Ey 1 4 E1K3
	Domain:
	$(x X \in \mathbb{Z})$
	Range:
	{y VERS
	Inverse
-1-	LUCERS
	えやし やくらく
	Range:
	$(\gamma) \neq (4)$

Notion that the inverse of a function isn't always a function

Recall: The graphical test to determine if a graph represents a function is called the vertical line test. The test checks to see that for each x-value there is only one y-value.

The graphical test to determine if the inverse of a function is a function is called the horizontal line test. The test checks to see that for each y-value there is only one x-value.

The **algebraic test** to determine if one function (f(x)) is the inverse of another (g(x)) is to see if: f(g(x)) = x and g(f(x)) = x.

Think: What is going on here? Is there a relationship that is important?

If the inverse of a function isn't a function, we will restrict the domain of the original function so that it will pass the horizontal line test (and the inverse will pass the vertical line test).

Domain: {X (X_ZO, XER3 Range: { y | y 2 - 2, y (R3 Inverse Domain: {X | X] -2, X ERS Range: (y | y 20, y 77 Domain: $(x | x \geq -1, x \in \mathbb{R})$ Range: {y y2 -1, yETZ3 Domain: $\begin{cases} \mathbf{X} \mid \mathbf{X} \not\subseteq -\mathbf{I}, \mathbf{X} \in \mathbb{R}^{3} \\ \text{Range:} \\ \langle \mathbf{Y} \mid \mathbf{Y} \not\subseteq -\mathbf{I}, \mathbf{Y} \in \mathbb{R}^{3} \end{cases}$ Peak - trough $(x | - \pm \leq x \leq \pm, x \in \mathbb{R})$ Range -15451, YER3 Inverse Domain: $\{\chi(-1 \leq \chi \leq l, \chi \in \mathbb{R}^{2})\}$ Range: {y|-<u>±_y5</u>;yER} Domain: {xlosxsl, xERS Range: {y1-25752, yER} Inverse Domain: x1.25x62,x673 Range: 105,

Given the graph below, what can you restrict the domain to so that the inverse is a function: