1.6 Radical Functions

A radical function is a function that involves a radical with a variable in the radicand.
Ex. $y=\sqrt{2 x-5}$
$y=\sqrt[3]{8 x}$
$y=(2 x)^{\frac{1}{5}}$

Radical functions with even indices $(\sqrt{ }, \sqrt[4]{ }, \sqrt[6]{ }$, etc) have restricted domains.
Ex. Use a table of values to graph the following functions:
Hint: remember about domain restrictions when choosing values of x for your table of values

Graphing Radical Functions Using Transformations

You can also graph radical functions by applying transformations to the graph of $y=\sqrt{x}$. To graph $y=a \sqrt{b(x-c)}+d$, recall the effects of the values in other types of functions.

- a- by
- $\quad b-$
- C -

- d -

(x, y)

Written/Edited by:

Ex. Describe how the following graphs compare to the graph of $y=\sqrt{x}$, then sketch the graphs

Square Root of a Function

The square root of a function, $y=f(x)$, is the function $y=\sqrt{f(x)}$.
The square root of a function is only defined for $f(x) \geq 0$.
Ex. Use a table of values to graph $y=2-x$ and $y=\sqrt{2-x}$ on the same axis.

x	$y=2-x$	$y=\sqrt{2-x}$
-2	4	2
-1	3	$\sqrt{3}$
0	2	$\sqrt{2}$
1	1	1
2	0	0

$\{x \mid x \in \mathbb{R}\} \quad\{x \mid x \leq 2, x \in \mathbb{R}\}$
$\{y \mid y \in \mathbb{R}\} \quad\{y \mid y \geq 0, y \in \mathbb{R}\}$

Identify the domain and range of each function and any invariant points.
$2-x=\sqrt{2-x}$
$4-4 x+x^{2}=2-x$
$x=2,1$
Written/Edited by:
Epp/Poelzer/Smith/Turner/Presta/Robertson/Simpson/Morgan/Hilton

Graphing the Square Root of a Function from the Graph of the Function

Graphing the square root of a function from the graph involves a 4 step process, as seen in the example below:
Ex. Given the graph of $y=f(x)$, sketch the graph of $y=\sqrt{f(x)} . \quad$
Step 1: Invariant Points Occur at $\mathrm{y}=0$ and $\mathrm{y}=1$ because
$y=0$

Step 2: Draw a curve above the graph between the invariant points (only where the graph of $y=f(x)$ is positive, of course)

Step 3: Choose a few points where the values of y are greater than 1, and square root these values to locate image points on the graph of
$y=\sqrt{f(x)}$

Step 4: Sketch smooth

 curves connecting the image points. Exclude intervals where $y=f(x)$ is negative (below the x -axis).
Solving Radical Equations Graphically (Optional)

Recall that the roots) of an equation are equal to the x-intercept of the graph of the corresponding radical function.

Ex. Determine the roots of $\sqrt{x+4}-3=0$ graphically.

- Graph $y=\sqrt{x+4}-3$ using technology.
- The function has an x-intercept at $(5,0)$.

Sometimes it is easier to find a solution by using a system of equations and determining the intersection point.

Ex. Solve $\sqrt{x-2}=x-4$

- Graph $y=\sqrt{x-2}$ and $y=x-4$ using technology. The functions intersect at $(6,2)$.

Written/Edited by:

Epp/Poelzer/Smith/Turner/Presta/Robertson/Simpson/Morgan/Hilton

