1.6 Radical Functions

A radical function is a function that involves a radical with a variable in the radicand.

Ex.
$$y = \sqrt{2x-5}$$
 $y = \sqrt[3]{8x}$ $y = (2x)^{\frac{1}{5}}$

Radical functions with even indices ($\sqrt{}$, $\sqrt[4]{}$, $\sqrt[6]{}$, etc) have restricted domains.

Ex. Use a table of values to graph the following functions:

Hint: remember about domain restrictions when choosing values of x for your table of values

Graphing Radical Functions Using Transformations

You can also graph radical functions by applying transformations to the graph of $y = \sqrt{x}$. To graph $y = a\sqrt{b(x-c)} + d$, recall the effects of the values in other types of functions.

 $\begin{array}{c} a \\ b \\ c \\ c \\ d \\ \end{array}$

Square Root of a Function

The square root of a function, y = f(x), is the function $y = \sqrt{f(x)}$. The square root of a function is only defined for $f(x) \ge 0$.

Ex. Use a table of values to graph y = 2 - x and $y = \sqrt{2 - x}$ on the same axis.

Epp/Poelzer/Smith/Turner/Presta/Robertson/Simpson/Morgan/Hilton

17

Graphing the Square Root of a Function from the Graph of the Function

Graphing the square root of a function from the graph involves a 4 step process, as seen in the example below:

Solving Radical Equations Graphically (Optional)

Recall that the root(s) of an equation are equal to the *x*-intercept of the graph of the corresponding radical function.

Ex. Determine the roots of $\sqrt{x+4} - 3 = 0$ graphically.

- Graph $y = \sqrt{x+4} 3$ using technology.
- The function has an *x*-intercept at (5,0).

Sometimes it is easier to find a solution by using a system of equations and determining the intersection point.

Ex. Solve
$$\sqrt{x-2} = x-4$$

- Graph $y = \sqrt{x-2}$ and y = x-4 using technology. The functions intersect at (6,2).

