Chapter 2 Algebraic Functions \& Graphing

2.1 Remainder Theorem

Recall long division: $7 \longdiv { 8 } \frac { 8 } { 6 0 }$ 56
4
Dividend = (divisor)(quotient) $\quad+$ remainder
$60 \quad=\quad(7)$ * (8) +4

If doing the long division with polynomials, there are two ways to do this: long division or synthetic division (using detached coefficients).
Ex. Divide the polynomial $x^{3}+7 x^{2}-10 x-15$ by $x-3$ using:

If a power is missing in the dividend, it must be included using zero (0) as the coefficient
To find the remainder when a polynomial is divided by a monomial (without doing the long division), use the remainder theorem:

$$
\text { When a polynomial } P(x) \text { is divided by } x-a \text {, the remainder is } P(a)
$$

Ex. Find the remainder when $x^{3}-4 x^{2}+5 x-1$ is divided by:

$x-2$ function notatiogn: $f(2)=2$ remainder: $=1$	$x+3$ function notation: $=1$
$f(-3)^{3}+5(2)-1$ remainder: -79	

$$
\text { If } P(a)=0 \text {, then } x-a \text { is a factor of the polynomial } P(x)
$$

Once you find factors of a polynomial, you can sketch a graph of the polynomial using the factors as roots (zeroes) of the polynomial.

Ex. Given that $P(3), P(-2)$ and $P(0)$ are the only roots of a polynomial function
a. sketch a possible graph of the polynomial
b. Write a possible function

$$
\begin{aligned}
& f(x)=(x-3)(x+2) x \\
& x \text {-ints @ } 3,-2,0 \\
& \text { degree }=3 \\
& \therefore \text { cubic } \\
& \text { Leading coefficient is }>0 \\
& \therefore \text { from QIII to } Q I
\end{aligned}
$$

