2.2 The Factor Theorem

The Factor Theorem states that $(x-a)$ is a factor of a polynomial function $P(x)$
if, and only if, $P(a)=0$.

Example 1: Determine which binomials are factors of $P(x)=x^{3}+4 x^{2}+x-6$

The maximum number of factors possible for $P(x)=x^{3}+4 x^{2}+x-6$ is \qquad .
Since all the factors of the polynomial have been found, we can write the polynomial in its factored form: $x^{3}+4 x^{2}+x-6=(x-1)(x+2)(x+3)$.

Knowing that the zeros of the polynomial function $P(x)$ can give us the x-intercepts of the corresponding graph, we are able to sketch a graph of $P(x)=x^{3}+4 x^{2}+x-6$

Written/Edited by:

Example 2: \quad Factor $x^{3}+2 x^{2}-5 x-6$ fully
Let $P(x)=x^{3}+2 x^{2}-5 x-6$

- Use the Factor Theorem to find at least one factor of $P(x)$. Try/test with values of x that are factors of 6 (the constant in the polynomial):

$$
\begin{aligned}
& \pm 1 \quad \pm 2 \quad \pm 3 \quad \pm 6 . 8 \text { cases fo che ck. } \\
& \text { you need to get lucky... } \\
& f(-1)=(-1)^{3}+2(-1)^{2}-5(-1)-6 \\
&=-1+2+5-6
\end{aligned}
$$

- To find another factor, use Synthetic (or Long) Division to divide $P(x)$ by the factor that was found in the first step. (*note* - remainder must be zero for this synthetic division too.) t we dunt wont to try all 8 cases.
$x+1 \frac{x^{2}+x-6}{x^{3}+2 x^{2}-5 x-6} \quad$ Once you find one ... yours of a $\frac{x^{3}+x^{2}}{x^{2}-5 x} \quad$ solve those.

$$
\begin{aligned}
& \frac{x^{2}-x x}{-6 x}-6 \\
& \frac{-6 x-6}{}
\end{aligned}
$$

- If any factors are foot in binomial form, factor further using synthetic division,

$$
\begin{aligned}
& \text { trinomial factoring, or the quadratic formula }\left(x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right) \\
& \begin{aligned}
f(x) & =x^{3}+2 x^{2}-5 x-6 \\
& =(x+1)\left(\frac{\left.x^{2}+x-6\right)}{4}\right) \\
f(x) & =(x+1)(x-2)(x+3)
\end{aligned}
\end{aligned}
$$

The final factored form of $x^{3}+2 x^{2}-5 x-6$ is $(x+1)(x-2)(x+3)$

Sketch a graph of $y=x^{3}+2 x^{2}-5 x-6$ by plotting the x and y intercepts
roots @ $-1,2,-3$
tive Leading coefficient.

Try This:
Factor $2 x^{3}-5 x^{2}-4 x+3$ fully.

Try - 1

$$
\begin{aligned}
f(-1) & =2(-1)^{3}-5(-1)^{2}-4(-1)+3 \\
& =-2-5+4+3 \\
& =0 \\
\therefore & (x+1) \text { is a factor }
\end{aligned}
$$

\rightarrow Now long division to get a confertable quadratic.

$$
\begin{aligned}
& x+1 \sqrt{2 x^{2}-7 x+3} \\
& \frac{2 x^{3}+2 x^{2}}{-7 x^{2}-4 x} \begin{array}{|l|}
\hline-7 x^{2}-7 x
\end{array} \downarrow \\
& \frac{3 x+3}{0} \\
& \text { Now } f(x)=2 x^{3}-5 x^{2}-4 x+3 \\
& =\frac{(x+1)\left(2 x^{2}-7 x+3\right)}{\zeta \text { factor }} \\
& a b=6 \\
& a+b=-7 \\
& \text { final: } \\
& f(x)=
\end{aligned}
$$

Sketch a graph of $y=2 x^{3}-5 x^{2}-4 x+3$ by plotting the x and y intercepts
I have my roots

$$
x=-1,3, \frac{1}{2}
$$

and the leading coefficient s

$$
>1
$$

I can make a rough graph.

