2.3 Graphing Polynomials

By now, you should have a pretty good idea as to what a polynomial looks like since both sections 2.1 and 2.2 are specific to polynomials. To be more specific:

A <u>polynomial</u> is a mathematical expression with one or more terms, in which the exponents are whole numbers and the coefficients are real numbers. Or even more specific:

A <u>polynomial</u> is an expression of the form $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x^1 + a_0$ where

 $a_n, a_{n-1}, ..., a_1, a_0$ are real (number) constants and *n* is a whole number.

Note:

- 1. $f(x) = \frac{1}{x}$ is NOT a polynomial because it can be re-written as: $f(x) = x^{-1}$ and -1 (the exponent) is NOT a whole number.
- 2. $f(x) = \sqrt{x}$ is NOT a polynomial because it can be re-written as $f(x) = x^{\frac{1}{2}}$ and $\frac{1}{2}$ (the exponent) is NOT a whole number.

In graphing polynomial functions, it is helpful to make reference to the <u>degree</u> of the polynomial as the degree gives many clues to what it may look like on a graph. Knowing whether the polynomial has an <u>even or odd degree</u> tells us even more.

Example 1: Sketch the following functions without using technology. Instead, use the x intercepts, the y intercept and the information you know given the degree (odd/even) to help you with your sketch. Note that the following have been factored to help you.

Name	Degree	Sample Equation	Max # of <i>x-intercepts</i>	Max # of Max's/Mins	Sample Graph(s)	Domain	Range
Constant	0	<i>y</i> = 5	0 (or ∞)	0	+	XER	
Linear	1	y=nx+b	1	0	X		euln desre - y ER
Quadratic	2	y = ax ² +bx+C	2	1	₩		odd degre Look fr May Inin
Cubic	3	$y=ax^3+bx^2+cx$ +d	3	٦	J.		
Quartic	4	y= x ⁴ +1	Ч	3	44		
Quintic	5	λ= χ ₂ +ς	5	Ч			
Sextic	6	y= x6 +x	6	5	+		

Septic	7	7=x7+x6	٦	6	P		
Octic	8	1=12 - 1	४	7	€₽-		
hectic	100	7 = × 100	(00	99	₩.	\checkmark	

Graph:

Written/Edited by: Epp/Poelzer/Smith/Turner/Presta/Robertson/Simpson/Morgan/Hilton