2.5 Composition of Functions

When two functions, $f(x)$ and $g(x)$, are combined after one function has been substituted into the other, a composite function has been created. The output of one function becomes the input of the other function.
For example, $f(g(x))$ means each " x " term in $f(x)$ is substituted by the function $g(x)$
Given $f(x)=5 x$ and $g(x)=x^{2}+2 x-3$, find
a. $f(g(2))$
$g(2)=(2)^{2}+2(2)-3$

$$
\begin{aligned}
f(5) & =5(5) \\
& =25
\end{aligned}
$$

b. $g(f(1))$

$$
\begin{aligned}
f(1) & =5(1) \\
& =5
\end{aligned}
$$

$$
\begin{aligned}
g(5) & =5^{2}+2(5)-3 \\
& =25+10-3 \\
& =32
\end{aligned}
$$

Note: $f(g(x))$ is read as " f of g of x " and is equivalent to $(f \circ g)(x)$
Given $f(x)=4 x+1$ and $g(x)=2-x$, find

a. $g(5)$	b. $f(g(5))$	c. $(f \circ g)(x)=f(g(x))$
$J(5)=2-5$	$f(-3)$	$f(x)=4 x+1$
$=-3$	$=4(-3)+1$	$f \circ g)(x)=$
	$=-11$	$y(2-x)+1$

Graphing composite functions\%

Composition of functions with formulas

