2.6 Rational Functions

Definition: A rational function is any function of the form: $R(x)=\frac{P(x)}{Q(x)}$, where $P(x)$ and $Q(x)$ are polynomial functions. This is very similar to the idea of a rational number is the division of 2 integers. When graphing rational functions there are 4 different types of "problems" can occur on their graph.

Written/Edited by:

1. Horizontal Asymptotes. Horizontal asymptotes describe the "end behaviour" of a function.

That is to say what happens to the graph as x becomes large and positive or large and negative.
Graph the following functions on your graphing calculator, and describe what is happening to the functions y values as x becomes large.

degree How can you tell if a function has a horizontal asymptote with out graphing it?
nurirn $=$ den
nurir divide the leading
Coefficients
vertical
slant
divide by zero| mum $=d e_{n}+1$

Ex. What are the horizontal asymptotes of:

$y=\frac{3 x^{3}+5 x-9}{5 x^{3}-2 x-10}$	$y=\frac{5 x-3 x^{2}-8000}{2 x^{3}+5 x-1}$	$y=\frac{4 x^{5}-3 x^{2}}{x^{4}-12}$
$y=\frac{3}{5}$	$y=0$	$y=x$

2. If a function doesn't have a horizontal asymptote, it might have an oblique (slant) asymptote. Linear oblique asymptotes occur when the degree of the numerator is one greater than the degree of the denominator.

Ex. Which of the following functions have oblique asymptotes?

$y=\frac{x^{2}+2}{x-1}$	$y=\frac{x^{2}-3 x+5}{2-x^{2}}$	$y=\frac{x^{3}+2 x-3}{2 x-5 x^{2}}$

$2=1+1$
$2=2$
$3=2+1$
\therefore oblique
\therefore oblique
\therefore horizontal

$$
@ y=-1
$$

Written/Edited by:

Find the oblique asymptotes of: $y=\frac{x^{2}-2 x-8}{x-3}$

$$
\begin{aligned}
& \frac{x+1}{x-3 \frac{x+2 x-8}{x^{2}-2 x}} \\
& \frac{x-3 x}{x-8} \\
& \frac{x-3}{-5}
\end{aligned} \quad=x+1-\frac{5}{x-3}
$$

3. Vertical Asympiotes/Holes. Rational functions whose denominators that have real roots will have either vertical asymptotes or holes. Holes will occur in a graph when a factor in the denominator cancels with a factor in the numerator. Vertical asymptotes will occur when the factor in the denominator doesn't cancel.

Example: Determine if the function has a hole (H) or a vertical asymptote (VA) and state its location (x-coordinate only)

$y=\frac{x+2}{x-3}$	$y=\frac{(x+2)(x+3)}{(x-3)(x-1)}$
$y=\frac{(x+2)(x+3)}{(x+2)}$	$y=\frac{(x+2)(x+3)}{(x-1)(x+3)}$
$y=\frac{(x+2)(x-3)}{(x+2)(x-3)(x+1)}$	$y=\frac{x^{2}+5 x+6}{x+2}$

If a function has a vertical asymptote, we take note of it and make a domain statement that doesn't allow this value to be substituted in to the function.

