Chapter 3 Logarithmic and Exponential Functions

3.1 Introduction to Exponential Functions.

An exponential function is a function of the form $f(x)=a b^{x}$, where a and b are constants $\neq 0$, and $b>0$.

If $b>1$ then we say the function is a growth function If $\mathrm{b}<1$ then we say the function is a decay function.

Compound Interest Formula
$A=P\left(1+\frac{r}{n}\right)^{1 \times n}$
A-Amant
$P-$ Principle

- Rate
$n-\frac{\text { \# of times }}{\text { period }}$
${ }^{t \text { - time period }}$

Annually	$\mathrm{N}=1$
Monthly	$\mathrm{N}=12$
Weekly	$\mathrm{N}=52$
Bi-weekly	$\mathrm{N}=2.2$
Semi-monthly	$\mathrm{N}=24$
Daily	$\mathrm{N}=365$

Written/Edited by:

Ex. Steve invests $\$ 12000$ at $11.5 \% /$ a compounded monthly for 2 years, what is the accumulated amount?

$$
\begin{aligned}
A & =10\left(1+\frac{r}{n}\right)^{n t} \\
& =12,000\left(1+\frac{0.1(5}{12}\right)^{12(2)} \\
& =\$ 15086 \cdot 67
\end{aligned}
$$

Ex. Jessie bought a house for $\$ 250000$, six years later she sold it for $\$ 600000$. What was the

Ex. The Ebola virus doubles every 30 minutes. If there are currently 2000 Ebola viruses are present in a petrie dish, how many are present in 7 hours from now?

$$
\begin{gathered}
A=2000(2)= \\
\tau 22,627
\end{gathered}
$$

Ex. Strontium -90 has a half life of 250 days. If there is a 50 gram sample present, how much Strontium -90 is left after 2000 days?

$$
\begin{aligned}
& A>50\left(\frac{1}{2}\right)^{\frac{200}{250}} \\
& =945
\end{aligned}
$$

Written/Edited by:

