3.2 Definition of a Logarithm

The inverse of an exponential function is called a LOGARITHMIC function.

$p=q^{r}$	$\log _{q} p=r$

Using the calculator, evaluate:

Log 10000	Log 10	$\log 0.01$
Log 1000	Log 1	$\log 0.001$
$\log 100$	$\log 0.1$	$\log 0.0001$

A logarithm without a base written is called a "common logarithm" and it's base is 10, ie.
$\log 100=\log _{10} 100=$
Convert from exponential form to logarithmic form:

| $\left(\frac{1}{8}\right)=2^{*} \log _{2}\left(\frac{1}{8}\right)=-3$ | $y=x^{4} \log _{3}(y)=n$ |
| :--- | :--- | :--- |

Change from logarithmic form to exponential form:

$\log _{2} 16=4$	$\log _{5} 125=3$
$\log _{\frac{1}{2}}\left(\frac{1}{8}\right)=3\left(\frac{1}{2}\right)^{3}=16$	
$\log _{p} q=r$	$\log _{\frac{1}{3}} 27=-3$

Evaluate the following logarithms:(NO CALCULATOR!)

Estimate the following logarithms:

$\log 20$ morethan (
way less than 2	$\log _{2} 9$ little more than 3
$\log _{3} 30$ little mon than 3	$\log 0.23$ negative a bit.
$\log _{7} 42$ (esse than 2	$\log _{2}\left(\frac{1}{10}\right)$ less than 3

Written/Edited by:

