$$
A=P\left(1+\frac{i}{n}\right)^{t \times n}
$$

$$
A=P(X)^{\frac{t}{n}}
$$

Ex. 1
Alex invests $\$ 1200$ paying 8% interest pa. compounded semi-annually Determine now long it takes his investment to double.

Scopenium has a half life of 35 days. If there is currently a sample of 80 kg presently, how long does it take until there is only 2 kg present?

If there are currently 200 bacteria living in Darren's locker, and in 5 days there are 4000. What is the doubling time of the bacteria?

$$
\begin{aligned}
4000 & =200(2)^{\frac{5}{n}} \\
20 & =\left(2^{5}\right)^{\frac{1}{n}} \\
\log (20) & =\log \left(32^{n}\right) \\
\log (20) & =\frac{1}{n} \log (32)
\end{aligned} \quad \square n=\frac{\log (32)}{\log (20)}
$$

The intensity of light decreases by 3% for every 5 meters it travels into water. At the surface of the water a source of light is 3000 lumens. How far did the light travel if it is now 1000 lumens?

$$
1000=3000\left(1+\frac{-03}{5}\right)^{5 t}
$$

$$
\frac{1}{3}=(.994)^{5 t}
$$

$$
\log \left(\frac{1}{3}\right)=\log \left(970^{t}\right)
$$

$$
\begin{aligned}
\rightarrow \log \left(\frac{1}{3}\right) & =t \log (.970) \\
\frac{\log \left(\frac{1}{3}\right)}{\log (.970)} & =t \\
37 m & =t
\end{aligned}
$$

$$
\begin{aligned}
& 2=80\left(\frac{1}{2}\right)^{\frac{t}{35}} \quad \log \left(\frac{1}{40}\right)=t \log (.980) \\
& \frac{1}{40}=\left[\left(\frac{1}{2}\right)^{\frac{1}{35}}\right]^{t} \\
& \operatorname{los}\left(\frac{1}{40}\right)=\log _{980} \hbar \\
& \frac{\log \left(t_{0}\right)}{\log (.986)}=t \\
& 182.6 \text { days }=t \\
& \text { Ex. } 3
\end{aligned}
$$

