3.5 Applications of Logarithms Part II

Ex. 1
A population of Tribbles multiplies five fold every 6 days. By how much does the population grow between the $4^{\text {th }}$ and $20^{\text {th }}$ day?

Ex. 2
Richter Scale $\left(I=I_{0} \times 10^{R}\right)$-- Where R is the Richter Number
Mr. Epp has a temper tantrum; it caused a magnitude 3.2 earthquake. Five days later he blew up at his D block class and it caused a magnitude 5.7 earthquake. How much stronger was the $2^{\text {nd }}$ earthquake as compared to the $1^{\text {st }}$ earthquake?

$$
\begin{align*}
& \left(I=I_{0} \times 10^{R_{2}-R}\right) \\
& \frac{\frac{I}{I_{0}}}{\frac{I_{0}}{5}}=10^{5} \\
& \frac{I}{I_{0}}=316 \text { bites as }
\end{align*}
$$

Ex. 3.
In Vancouver there was a magnitude 4.6 earthquake, five days later an aftershock occurred, it was $1 / 40$ the magnitude of the $1^{\text {st }}$ earthquake. What is the Richter number of this earthquake?

> The pH scale measures acidity ($0-7$) or alkalinity ($7-14$) of a solution. It is a logarithmic scale in $R_{2} \simeq 3$ base 10. Thus, a pH of 12 is 10 times more alkaline than a pH of 11 . If bleach has a pH of 13 , how many more times more alkaline is it than blood which as a pH of 8 ?

Ex. 5. If the pH of acetic acid is 5 , what is the pH of hydrochloric acid if it is 200 times more acidic?

$$
\begin{aligned}
& \left(P=P_{0} \times 10^{p H_{-}-p H_{1}}\right) \\
& \frac{P}{P_{0}}=\frac{1}{200}=10^{p H_{2}-5} \longrightarrow \frac{10^{5}}{200}=10^{\mathrm{pH}_{2}} \\
& \frac{1}{200}=\frac{10^{\mathrm{pH}}}{10^{5}} \quad \operatorname{los}\left(\frac{10^{5}}{200}\right)=\mathrm{pHz} \\
& \text { leto }
\end{aligned}
$$

