3.6 Solving Exponential Equations

Solve the following 2 different ways: $27^{3-x}=81^{2 x+1}$

By writing as a exponential equation with a common base

$$
\left(3^{3}\right)^{3-x}=\left(3^{4}\right)^{2 x+1}
$$

$$
3^{9-3 x}=3^{8 x+4}
$$

$$
3^{4-x x}=3
$$

$$
a-3 x=8 x+4
$$

$$
9-4=8 x+3 x
$$

$$
5=11 x
$$

$$
\frac{5}{11}=x
$$

Using Log Base 3

$$
\begin{aligned}
\log _{3}\left(27^{3-x}\right) & =\log _{3}\left(81^{2 x+1}\right) \\
(3-x) \log _{3}(27) & =(2 x+1) \log _{3}(81) \\
(3-x) 3 & =(2 x+1) 4 \\
9-3 x & =8 x+4 \\
9-4 & =8 x+3 x \\
5 & =11 x \\
\frac{5}{11} & =x
\end{aligned}
$$

Solve for x :

Solve for x in terms of a, b, and c.

$$
\begin{aligned}
\frac{a b^{2 x-1}=c^{x-4}}{b} & =\frac{c^{x}}{c^{4}} \\
\frac{b^{2 x}}{c^{x}} & =\frac{b}{a c^{4}} \\
\left(\frac{b^{2}}{c}\right)^{x} & =\frac{b}{a c^{4}} \\
x \log \left(\frac{b^{2}}{c}\right) & =\log \left(\frac{b}{a c^{4}}\right) \\
x & =\log \left(\frac{b}{a c^{4}}\right)
\end{aligned}
$$

